ELECTRONICS AND COMMUNICATIONS ENGINEERING (AFFILIATED TO JNTUK, KAKINADA) (RECOGNISED BY M.L. INDIA COUNCIL FOR TECH, EDN., NEW DELHI Accredited by NAAC with 'A' Grade Recognised as Scientific and Industrial Research Organisation CHINNA AMIRAM (F.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204 #### Dr. M.Jagapathi Raju h. (IIT.KGP), Ph.D.(A.II), FIE,MISTE, PRINCIPAL (I/c.) Phones: Off: EPABX :08816-223332 Ext.201 College:08816-222748 Fax:08816-224516 Mobile No.9848773515 Emails: profmjraju999@gmail.com principal@srkrec.ac.in Web Site: www.srkrec.ac.in #### PROCEEDINGS OF THE PRINCIPAL Ref.No: SRKREC/Committee/BoS/ECE/3 Date: 11-04-2019 Sub: Appointment of BoS members for Electronics and Communication Engineering (ECE) department-Reg The following members are nominated as Board of Studies members for the Department of Electronics and Communication Engineering (ECE). This order will come into force with immediate effect until further orders. | S
No | Name | Position in committee | Associated with | |---------|----------------------------------|----------------------------------|---| | 01 | Dr. P.V.Rama Raju | Chairman | Professor & Head, Dept. of ECE, SRKREC | | 02 | Dr. K.PadmaPriya | JNTUK Nominee | Professor, Dept. of ECE, UCE
JNTUK, Kakinada-533003. | | 03 | Prof. G.Sasibhushana Rao | AU Nominee | Professor & Head, Department of ECE
Andhra University, Visakhapatnam | | 04 | Dr. N.V.S. Narasimha
Sarma | Experts from other Universities | Professor, Department of ECE, National
Institute of Technology Warangal | | 05 | Dr. A. Mallikarjuna Prasad | (6) | Professor, Department of ECE, JNTUK,
Kakinada | | 06 | Sri SVN Narayana Rao | Industry Expert | CEO, Salcit Technologies Pvt. Ltd., Flat No. 2408, Sai Dream Castle, Nizampet, Hyderabad-500090 | | 07 | Dr. M.Chakravarty | Expert- Research
Organization | Scientist G, DLRL
Chandrayangutta, Hyderabad-500005. | | 08 | Prof. N. Venkateswara Rao | | Professor, SRKR Engineering College | | 09 | Prof. D.V.R.Mohan | | Professor, SRKR Engineering College | | 10 | Prof. P.Subba Rao | | Professor, SRKR Engineering College | | 11 | Dr. N.Udaya Kumar | Faculty of each | Professor, SRKR Engineering College | | 12 | Dr. B.V.S.S.N.Raju | specialization | Professor, SRKR Engineering College | | 13 | Prof. G.V.S.Padma Rao | | Professor, SRKR Engineering College | | 14 | Sri M. Vijaya Rama Raju | | Associate Professor, SRKR Engineering College | | 15 | Dr. S.S. Mohan Reddy | ā. | Associate Professor, SRKR Engineering College | | 16 | Sri Y. Rama Lakshmana | | Associate Professor, SRKR Engineering College | | 17 | Ms. JLNSS Manga Tayaru | | M.Tech Student | | 18 | Ms. Kondapalli Hari
Keerthana | Student
Representatives | B.Tech. Student | | 19 | Mr. ValluriVenkata Sai
Sriram | | B.Tech. Student | c.c.to: Principal's table HOD-ECE All the above Members 4 Office file. S.R.K.R. Engineering College (Autonomous) China Amiram, Bhimayaram-534 204. (AFFILIATED TO INTUK, KAKINADAHRECOGNISED BY ALL INDIA COUNCIL FOR TECHNICAL EDUCATION, NEW DELHIL Accredited by NAAC with 'A' Grade Recognised as Scientific and Industrial Research Organisation CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204 Dr. M. Jagapathi Raju M.Tech (IIT. KGP), Ph.D (A.U), FIE, MISTE Vice-Principal (Academics) and In-charge PRINCIPAL Phones: Off: EPABX:08816-223332 Ext. 201 Date: 15.04.2019 College: 08816-222748 Fax: 08816-224516 Mobile No.: 9848773515 Email: profmjraju999 @gmail.com principal@srkrec.ac.in Website: www.srkrec.ac.in SRKREC/BOS-1/ECE/2018-19 To Dr. K. Padma Priya Professor, Dept. of ECE University College of Engineering Kakinada JNTUK, Kakinada-533003. Dear Madam.) Sub: S.R.K.R. Engineering College-Board of Studies Meeting-Invitation-Reg. We wish to inform you that Joint Board of Studies meeting will be held on 22.04.2019 at 11-00 A.M in A.C. Auditorium (I-101) of S.R.K.R. Engineering College. We request you to kindly attend the meeting and give your expert advice in designing the curriculum to maintain quality in academics. The Board of Studies meetings will be conducted in respective departments as per the schedule mentioned below: | S.No. | BOARD | DATE | TIME | |-------|---|------------|----------| | 1 | Civil Engineering | 22.04.2019 | | | 2 | Computer Science & Engineering | | 2.00 P.M | | 3 | Electronics & Communication Engineering | 22.04.2019 | 2.00 P.M | | 4 | Electrical & Electronics Engineering | 22.04.2019 | 2.00 P.M | | 5 | Information Technology | 22.04.2019 | 2.00 P.M | | 6 | Mechanical Engineering | 22.04.2019 | 2.00 P.M | | | Combined David Committee | 22.04.2019 | 2.00 P.M | | • | Combined Board of Studies in Engineering
Chemistry/Engineering Mathematics/Engineering
Physics / Humanities and Social Sciences | 22.04.2019 | 2.00 P.M | The T.A / D.A. will be paid to all the external members as per the university guidelines. We request you to make it convenient to attend the meetings. PRINCIPAL S.R.K.R. Engg. College BHIMAYARAM-534 284. Pin: 534 204 Yours faithfully, 1)ag-a. M oby In-charge Principal PRINCIPAL S.R.K.R. Engg. College BHIMAYARAM-534 204 (AFFILIATED TO INTUK KAKINADA) (RECOGNISED BY ALL INDIA COUNCIL FOR TECHNICAL EDUCATION, NEW DELHI) Accredited by NAAC with 'A' Grade Recognised as Scientific and Industrial Research Organisation CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204 Dr. M. Jagapathi Raju M.Tech (HT, KGP), Ph.D (A.U), FIE, MISTE Vice-Principal (Academics) and In-charge PRINCIPAL Phones: Off: EPABX:08816-223332 Ext. 201 College: 08816-222748 Fax: 08816-224516 Mobile No.: 9848773515 Email: profmjraju999 @gmail.com principal@srkrec.ac.in Website: www.srkrec.ac.in Date: 15.04.2019 SRKREC/BOS-1/ECE/2018-19 To Prof. G.Sasibhushana Rao Professor & Head Department of ECE College of Engineering (A) Andhra University Visakhapatnam - 530003. Dear Sir, Sub: S.R.K.R. Engineering College-Board of Studies Meeting-Invitation-Reg. We wish to inform you that Joint Board of Studies meeting will be held on 22.04.2019 at 11-00 A.M in A.C. Auditorium (I-101) of S.R.K.R. Engineering College. We request you to kindly attend the meeting and give your expert advice in designing the curriculum to maintain quality in academics. The Board of Studies meetings will be conducted in respective departments as per the schedule mentioned below: | S.No. | BOARD | DATE | TIME | |-------|---|------------|----------| | 1 | Civil Engineering | 22.04.2019 | 2.00 P.M | | 2 | Computer Science & Engineering | 22.04.2019 | 2.00 P.M | | 3 | Electronics & Communication Engineering | 22.04.2019 | 2.00 P.M | | 4 | Electrical & Electronics Engineering | 22.04.2019 | 2.00 P.M | | 5 | Information Technology | 22.04.2019 | 2.00 P.M | | 6 | Mechanical Engineering | 22.04.2019 | 2.00 P.M | | 7 | Combined Board of Studies in Engineering Chemistry/Engineering Mathematics/Engineering Physics / Humanities and Social Sciences | 22.04.2019 | 2.00 P.M | The T.A / D.A. will be paid to all the external members as per the university guidelines. We request you to make it convenient to attend the meetings. PRINCIPAL S.R.K.R. ENGS. COILEGE SHIMAVARAM-534 204. Yours faithfully, In-charge Principal PRINCIPAL S.R.K.R. Engg. College BHIMAVARAM-534 204 PAFFILIATED TO JNEEK, KAKINADA) (RECOGNISED BY ALL INDIA COUNCIL FOR LECHNICAL EDUCATION, NEW DELIID Accredited by NAAC with 'A' Grade Recognised as Scientific and Industrial Research Organisation CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204 Dr. M. Jagapathi Raju M. Tech (HT, KGP), Ph.D (A.U), FIE, MISTE Vice-Principal (Academics) and In-charge PRINCIPAL Phones: Off: EPABX:08816-223332 Ext. 201 College: 08816-222748 Fax: 08816-224516 Mobile No.: 9848773515 Email: profinjraju999 @gmail.com principal@srkrec.ac.in Website: www.srkrec.ac.in Date: 15.04.2019 SRKREC/BOS-1/ECE/2018-19 Dr. A. Mallikarjuna Prasad Professor, Department of ECE University College of Engineering Kakinada JNTUK, Kakinada-533003. Dear Sir. Sub: S.R.K.R. Engineering College-Board of Studies Meeting-Invitation-Reg. We wish to inform you that Joint Board of Studies meeting will be held on 22.04.2019 at 11-00 A.M in A.C. Auditorium (I-101) of S.R.K.R. Engineering College. We request you to kindly attend the meeting and give your expert advice in designing the curriculum to maintain quality in academics. The Board of Studies meetings will be conducted in respective departments as per the schedule mentioned below: | S.No. | BOARD | DATE | TIME | |-------|---|------------|----------| | 1 | Civil Engineering | 22.04.2019 | 2.00 P.M | | 2 | Computer Science & Engineering | 22.04.2019 | 2.00 P.M | | 3 | Electronics & Communication Engineering | 22.04.2019 | 2.00 P.M | | 4 | Electrical & Electronics Engineering | 22.04.2019 | 2.00 P.M | | 5 | Information Technology | 22.04.2019 | 2.00 P.M | | 6 | Mechanical Engineering | 22.04.2019 | 2.00 P.M | | 7 | Combined Board of Studies in Engineering
Chemistry/Engineering Mathematics/Engineering
Physics / Humanities and Social Sciences | 22.04.2019 | 2.00 P.M | The T.A / D.A. will be paid to all the external members as per the university guidelines. We request you to make it convenient to attend the meetings. S.R.K.R. Engg. College RHIMAVARAM-534 204 Yours faithfully, The Jagames OLA In-charge Principal (AFFILIATED TO INTUK, KAKINADA) (RECOGNISED BY ALL INDIA COUNCIL FOR TECHNICAL EDUCATION, NEW DELIII) Accredited by NAAC with 'A' Grade Recognised as Scientific and Industrial Research
Organisation CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204 Dr. M. Jagapathi Raju M.Tech (IIT, KGP), Ph.D (A.U), FIE, MISTE Vice-Principal (Academics) and In-charge PRINCIPAL Phones: Off: EPABX:08816-223332 Ext. 201 College: 08816-222748 Fax: 08816-224516 Mobile No.: 9848773515 Email: profmjraju999 @gmail.com Date: 15.04.2019 principal@srkrec.ac.in Website: www.srkrec.ac.in SRKREC/BOS-1/ECE/2018-19 To Sri SVN Narayana Rao CEO, Salcit Technologies Pvt. Ltd. Flat No. 2408, Sai Dream Castle, Nizampet, Hyderabad-500090. Dear Sir, Sub: S.R.K.R. Engineering College-Board of Studies Meeting-Invitation-Reg. We wish to inform you that Joint Board of Studies meeting will be held on 22.04.2019 at 11-00 A.M in A.C. Auditorium (I-101) of S.R.K.R. Engineering College. We request you to kindly attend the meeting and give your expert advice in designing the curriculum to maintain quality in academics. The Board of Studies meetings will be conducted in respective departments as per the schedule mentioned below: | S.No. | BOARD | DATE | TIME | |-------|---|------------|----------| | 1 | Civil Engineering | 22.04.2019 | 2.00 P.M | | 2 | Computer Science & Engineering | 22.04.2019 | 2.00 P.M | | 3 | Electronics & Communication Engineering | 22.04.2019 | 2.00 P.M | | 4 | Electrical & Electronics Engineering | 22.04.2019 | 2.00 P.M | | 5 | Information Technology | 22.04.2019 | 2.00 P.M | | 6 | Mechanical Engineering | 22.04.2019 | 2.00 P.M | | 7 | Combined Board of Studies in Engineering Chemistry/Engineering Mathematics/Engineering Physics / Humanities and Social Sciences | 22.04.2019 | 2.00 P.M | The T.A / D.A. will be paid to all the external members as per the university guidelines. We request you to make it convenient to attend the meetings. S.R.K.R. Engg. College BHIMAYARAM-534 204 Pin Say 204 Yours faithfully, In-charge Principal PRINCIPAL S.R.K.R. Engg. College BHIMAVARAM-534 204 # SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE(A) CHINNA AMIRAM :: BHIMAVARAM-534204 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Dt: 18-04-2019 #### **CIRCULAR** This is to inform you that the Department of ECE has convened a meeting on 22-04-2019 at 2 PM in the ECE Department Library. In this connection, all the Board of Studies members are requested to attend the same. #### Agenda: - 1. Approval of Syllabus for the IV year B.Tech.(R16) courses related to the ECE branch as per the schemes approved in the Joint Board of Studies meeting. - 2. Approval of Syllabus for the III Year B.Tech.(R17) courses related to the ECE branch as per the schemes approved in the Joint Board of Studies meeting. - 3. Any other item with the permission of the chair. Head of Each the Department S.R.K.R. Engg. College BHIMAVARAM-534 204 C.C to: - 1. The Members of Board of studies - 2. Office file PRINCIPAL S.R.K.R. Engg. College BHIMAVARAM-834 204. # Board of Studies Meeting of ECE Department on 22-04-2019 at 2.00 P.M. in ECE Department Library #### **AGENDA** - Approval of Syllabus for the IV year B.Tech. (R16) courses related to the ECE branch as per the schemes approved in the Joint Board of Studies meeting. - Approval of Syllabus for the III year B.Tech. (R17) courses related to the ECE branch as per the schemes approved in the Joint Board of Studies meeting. - 3. Any other item with the permission of Chair PRINCIPAL 8.R.K.R. ENSO. COILOGO. #### BOARD OF STUDIES MEMBERS | S.
No | Category | Name | Position | Phone No. | Email Id | |----------|--------------------------------------|------------------------------|---|--------------------------|--| | 1 | Chairman | Dr. P.V.Rama Raju | Professor & Head,
Dept. of ECE
SRKR Engineering College | 9010144688 | pvrraju50@gmail.com | | 2 | JNTUK Nominee | Dr. K.Padma Priya | Professor, Dept. of ECE
University College of
Engineering Kakinada
JNTUK, Kakinada-533003. | 9290532182
8978244955 | kesaripadmapriya@gmail.com | | 3 | AU Nominee | Prof. G.Sasibhushana
Rao | Professor & Head
Department of ECE
College of Engineering (A)
Andhra University
Visakhapatnam - 530003. | 9849747131 | sasi_gps@yahoo.co.in
sasigps@gmail.com | | 4 | Experts from other Universities | Dr. N.V.S.Narasimha
Sarma | Professor Department of Electronics & Communication Engineering National Institute of Technology Warangal Warangal-506004, Telangana. | 9849639262
8702462412 | sarma@nitw.ac.in | | 5 | Offiversides | Dr. A. Mallikarjuna Prasad | Professor,
Department of ECE
University College of
Engineering Kakinada
JNTUK, Kakinada-533003. | 9441564840
9963993504 | a_malli65@yahoo.com
a_malli65@jntucek.ac.in | | 6 | Industry Expert | Sri SVN Narayana Rao | CEO, Salcit Technologies
Pvt. Ltd., Flat No. 2408, Sai
Dream Castle, Nizampet,
Hyderabad-500090 | 9945399533 | svn@salcit.in | | 7 | Expert from Research
Organization | Dr. M.Chakravarty | Scientist G, DLRL
Chandrayangutta,
Hyderabad-500005. | 9490796232 | cv_mada@yahoo.co.in | PRINCIPAL DE DE S.R.K.R. ENGS. COLLAG. BHIMAVARAM. 534 204. | S.
No | Category | Name | Position | Phone No. | Email Id | |----------|--------------------------------|-----------------------------------|---|------------|---------------------------| | 8 | | Prof. N. Venkateswara
Rao | Professor Dept. of ECE SRKR Engineering College | 9490031988 | vmagalla@gmail.com | | 9 | Faculty of each specialization | Prof. D.V.R.Mohan | Professor Dept. of ECE SRKR Engineering College | 9490629574 | dvr_mohan2001@yahoo.com | | 10 | | Prof. P.Subba Rao | Professor Dept. of ECE SRKR Engineering College | 9848226424 | patsrao@rediffmail.com | | 11 | | Dr. N.Udaya Kumar | Professor Dept. of ECE SRKR Engineering College | 9440354093 | n_uk2007@yahoo.com | | 12 | | Dr. B.V.S.S.N.Raju | Professor Dept. of ECE SRKR Engineering College | 9441907761 | bvssnraju1@rediffmail.com | | 13 | | Prof. G.V.S.Padma Rao | Professor Dept. of ECE SRKR Engineering College | 9848466678 | gvspadmarao@gmail.com | | 14 | | Sri M. Vijaya Rama Raju | Associate Professor
Dept. of ECE
SRKR Engineering College | 9492917958 | mvrr_srkr@rediffmail.com | | 15 | | Dr. S.S. Mohan Reddy | Associate Professor
Dept. of ECE
SRKR Engineering College | 9849238118 | rahulmohan720@gmail.com | | 16 | | Sri Y. Rama Lakshmana | Associate Professor
Dept. of ECE
SRKR Engineering College | 9989916816 | yrljohnson@gmail.com | | 17 | | Ms. JLNSS Manga Tayaru | M.Tech Student | | manga Tayaru | | 18 | Student
Representatives | Ms. Kondapalli Hari,
Keerthana | B.Tech. Student | | Keesthana | | 19 | | Mr. Valluri Venkata Sai
Sriram | B.Tech. Student | | Seri ren- | f. Dagagall. de j. S.R.K.R. Engg. Col. BHIMAVARAM-534 20 # Bos needing for ECE on 22-04-2019 15 of 2 pg. | menton present | hippoliure | |---|-------------------| | | Mertin | | D or NUIN Sorme, Director, 2211 | 1000 many | | D or NUEN Sorme, Director, EETT Tricky | | | @ Prof K. Pedne Priya, UCE-K, JATUL | Kel | | 62 C. | @ l. | | (3) Pri Sun Marayene Rao | Sorkow | | CEO, Salat Tersharpuns port 49, 4yd | | | D or KUSDAgv | Kilon | | (3) Port N. Venketchucker | 20 | | (6) por ove Molon | - Or | | | - | | 1000 - 1000 | Grate - | | and Bulling Row | HSPAN- | | (5) Early School Ros | Grenaro | | (10) post que Pedmo Ras | ning | | (1) on Mu Rane New | Sps. | | (1) or SI Mohim real | | | Post P. Subba Ros | y lacudo. | | Most P. Sulla Kon | . 3 | | (5) PA. OVRIVOhan | Os- | | B DO P. V. RIKMB RAJU. | 22/64/19 | | resortes: 1. The sylles for Byo | Bru (RIG) en | | 1. Muses Steel (212) 5 c | poronio au | | fordiza in Bos Meeting hel | d IN IN RCE | | portal in a size of 2 | PM, | | Dept on 22042015 et 2 | w the Constelland | | 2. The sylutes remited is barred a | | | feedball toky in 2018. | | | | MINE TACOILOGO | (Affiliated to Andhra University, Visakhapatnam), (Recognised by AICTE, New Delhi) Accredited by NAAC with _A^ Grade Recognised as Scientific and Industrial Research Organisation CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204 #### SCHEME OF INSTRUCTION & EXAMINATION (Regulation R16) #### IV/IV B.TECH (With effect from 2016-2017 Admitted Batch onwards) Under Choice Based Credit System #### ELECTRONICS AND COMMUNICATION ENGINEERING #### I-SEMESTER | Code
No. | Course | Credits | Lecture
Hrs | Tutori
al
Hrs | Lab
Hrs | Total
Contact
Hrs/We
ek | Sessio
nal
Marks | Exam
Mark
s | Total
Marks | |----------------|--|---------|----------------|---------------------|------------|----------------------------------|------------------------|-------------------|----------------| | B16 EC
4101 | Digital Image Processing | 4 | 3 | 1 | - | 4 | 30 | 70 | 100 | | B16 EC
4102 | VLSI Design | 4 | 3 | 1 | 43 | 4 | 30 | 70 | 100 | | B16 EC
4103 | Fiber Optic
Communications | 4 | 3 | 1 | ¥ | 4 | 30 | 70 | 100 | | B16 EC
4104 | Microwave Engineering &
Optical communications
Lab | 2 | - | - | 3 | 3 | 50 | 50 | 100 | | B16 EC
4105 | Digital Communication
Lab | 2 | - | - | 3 | 3 | 50 | 50 | 100 | | B16 EC
4106 | Project Phase-I | 2 | - | - | 3 | 3 | 50 | | 50 | | | Total | 18 | 9 | 3 | 9 | 21 | 240 | 310 | 550 | H. Dagapall. de je S.R.K.R. Engg. College S.R.K.R. Engg. College SHIMAVARAM-834 204. #### DIGITAL IMAGE PROCESSING Theory : 3 Periods Sessionals 30 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits 4 #### Course Objectives: The student should be made to - 1.Learn digital image fundamentals. - 2.Be exposed to simple image processing techniques. -
3.Be familiar with image compression techniques. - 4. Learn to represent color image in form of features. - 5.Be exposed to segmentation techniques. #### Course Outcomes: Upon successful completion of this course, students will be able to: - 1. Discuss digital image fundamentals. - 2. Apply image enhancement and restoration techniques. - 3.Use image compression techniques. - 4. Represent features of color images. - 5.Use image segmentation techniques. #### **SYLLABUS** **DIGITAL IMAGE FUNDAMENTALS** Introduction — Origin — Steps in Digital Image Processing — Components — Elements of Visual Perception — Image Sensing and Acquisition — Image Sampling and Quantization — Relationships between pixels. #### **IMAGE ENHANCEMENT** Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering–Smoothing and Sharpening of Spatial Filtering – Frequency Domain: Introduction to Fourier Transform – Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters. #### IMAGE RESTORATION Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Inverse Filtering, Weiner Filtering . **IMAGE COMPRESSION** Compression: Fundamentals – Image Compression models – Error Free Compression – Variable Length Coding – Bit-Plane Coding – Lossless Predictive Coding – Lossy Compression – Lossy Predictive Coding – Compression Standards. #### COLOR IMAGE PROCESSING AND SEGMENTATION Color fundamentals, colormodels,theRGB,the CMY and CMYK, the HSI colormodels,color transformations, color slicing, tone and color corrections, histogram processing, segmentation fundamentals, thresholding. S.R.K.R. ENGB. GOTTES. BHIMAVARAM. 534 204: H. Dagapall. Wiji #### Text book: 1. Rafael C. Gonzales, Richard E. Woods, -Digital Image Processingl, Third Edition, Pearson Education, 2010. #### Reference Books: - Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, -Digital Image Processing Using MATLABI, Third Edition Tata McGraw Hill Pvt. Ltd., 2011. - 2. Anil Jain K. -Fundamentals of Digital Image Processing ||, PHI Learning Pvt. Ltd., 2011. - 3. William K Pratt, -Digital Image Processingl, John Willey, 2002. - Malay K. Pakhira, -Digital Image Processing and Pattern Recognition, First Edition, PHI Learning Pvt. Ltd., 2011. - 5. http://eeweb.poly.edu/~onur/lectures/lectures.html. - 6. http://www.caen.uiowa.edu/~dip/LECTURE/lecture.ht f. Magazall. de je S.R.K.R. ENGS. College BHIMAVARAM-834 294. #### VLSI DESIGN Theory : 3 Periods Sessionals 30 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits 4 #### Course Objectives: Student will be introduced to - Use mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnections. Learn the various fabrication steps of NMOS, CMOS technologies - 2. Apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect and to verify the functionality, timing, power and parasitic effects. - 3. Learn some basic electrical properties of MOSFET and scaling models and limitations of scaling of MOS circuits. - 4. Learn architectural issues and design some structured systems of MOS circuits. - The concepts and techniques of modern integrated circuit design and testing (CMOS VLSI). Design static CMOS combinational and sequential logic at the transistor level, including mask layout. #### **Course Outcomes:** By the end of the course the learners (students) will be able to - 1. Apply the Concept of design rules during the layout of a circuit. Model and simulate digital - 2. VLSI systems using hardware design language. - 3. Synthesize digital VLSI systems from register-transfer or higher level descriptions - 4. Understand current trends in semiconductor technology, and how it impacts scaling and performance. #### **SYLLABUS** Review of microelectronics and an introduction to MOS technology: Introduction to IC technology, MOS and related VLSI technology, NMOS, CMOS, Bi-CMOS Technologies, Production of E beam marks, I_{ds} versus V_{ds} Relationships, , Pull-up to Pull-down Ratio for NMOS inverter, Alternative forms of pull-up. #### MOS and Bi-CMOS circuit design processes: MOS layers, Stick diagrams, Design rules, and layout, 2 & 1.2 micro meter Double Metal, Double Poly. CMOS/Bi-CMOS rules, Layout diagrams, Symbolic diagrams. #### **Basic Circuit concepts:** Sheet resistance, Area capacitances of layers, Delay unit, Wiring Capacitances, Choice of layers. **Scaling of MOS Circuits:** Scaling Models and Scaling Factors, Scaling Factors for device parameters, Limitations of scaling. PRINCIPAL PRINCIPAL College 4 Sub system design and Layout: Architectural issues, Switch logic, Gate Logic, Examples of Structural design (Combinational logic). Sub system design process: Design of ALU subsystem, Some commonly used Storage/Memory Elements, Aspects of design tools, Design for testability, Practical design for test guidelines, Built in self-test, CMOS projectan incrementer / decrementer, a comparator for two n-bit numbers. Ultra-fast systems, Technology development, MOSFET based design. #### Text books: 1. Basic VLSI Design by Douglas A, Pucknell, Kamran Eshraghian, PrenticeHall, 1996, 3rd Edition. #### Reference Books: - Mead, C.A and Conway, LA, -Introduction to VLSI Systems, AddisonWesley, Reading, Massachusetts, 1980. - 2. CMOS Digital Integrated Circuits Analysis and Design-Sung-MO kang, YusufLeblebici, Tata 3. McGraw Hill Education, 2003. PRINCIPAL S.R.K.R. Engg. College H. Dagapall. De je #### FIBER OPTIC COMMUNICATIONS Theory : 3 Periods Sessionals 30 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs Credits 4 Course objectives: The student will be introduced to - 1. Functionality of each of the components that comprise a fiber- optic communication system - 2. Properties of optical fiber that affect the performance of a communication link and types of fiber materials with their properties and the losses occur in fibers. - 3. Principles of single and multi-mode optical fibers and their characteristics - 4. Analyze the operation of LEDs, laser diodes, and PIN photo detectors (spectral properties, Band width, and circuits) and apply in optical systems. - 5. Analyze and design optical communication and fiber optic sensor systems and analog and digital receivers. Course outcomes: After going through this course the student will be able to - 1. Choose necessary components required in modern optical communications systems. - Design and build optical fiber experiments in the laboratory, and learn how to calculate electromagnetic modes in waveguides, the amount of light lost going through an optical system, dispersion of optical fibers. - 3. Use different types of photo detectors and optical test equipment to analyze optical fiber and light wave systems. - 4. Choose the optical cables for better communication with minimum losses. - 5. Design, build, and demonstrate optical fiber experiments in the laboratory. #### **SYLLABUS** #### Overview of optical fiber communication The general system, advantages of optical fiber communications. Optical fiber wave guides-Introduction, Ray theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays, Cylindrical fibers- Modes, V-number, Mode coupling, Optical propagation through fiber modes. Step Index fibers, Graded Index fibers, Single mode fibers- Cut off wavelength, Mode Field Diameter, Effective Refractive Index, Related problems. #### Transmission characteristics of optical fiber Glass, Active glass, Plastic optical fibers. Signal distortion in optical fibers-Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses, Information capacity determination, Group delay, Types of Dispersion:- Material dispersion, Wave-guide dispersion, Polarization-Mode dispersion, Intermodal dispersion, Pulse broadening in Graded index fiber, Related problems. P. Dagapalle Me ju **Optical Sources & Detectors** LEDs, Structures, Materials, Quantum efficiency, Power, Modulation, Power bandwidth product. Injection Laser Diodes- Modes, Threshold conditions, External quantum efficiency, Laser diode rate equations, Resonant frequencies, Reliability of LED&ILD, Optical detectors- Physical principles of PIN and APD, Detector response time, Temperature effect on Avalanche gain, Comparison of Photo detectors, Related problems. Fabrication, Cabling, Installation & Fiber connectors Fabrication – Deposition methods. Fiber optic cables – Basic structure, Loose buffer cable, tight buffer cables, Cable classification. Installation- Classification, Procedure. Fiber connectors-Connector types, Single mode fiber connectors, Connector return loss, Fiber Splicing-Splicing techniques, Splicing single mode fibers, Fiber alignment and joint loss-Multimode fiber joints, single mode fiber joints. Source to fiber Power launching Output patterns, Power coupling, Power launching vs Wavelength, Equilibrium Numerical Aperture, Laser diode to fiber coupling, Optical receiver operation- Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of Error, Quantum limit, Analog receivers. Optical system design - Point-to- point links- Link power budget, Rise time budget with examples, WDM, Necessity, Principles. #### Text books: - Optical Fiber Communications Gerd Keiser, McGraw-Hill International edition, 3rd Edition, 2000. - 2. Optical Fiber Communications John M. Senior, PHI, 2nd Edition, 2002. #### Reference Books: - Fiber Optic Communications D.K. Mynbaev , S.C. Gupta and Lowell L. Scheiner, Pearson Education, 2005. - 2. Text Book on Optical Fiber Communication and its Applications S.C.Gupta, PHI, 2005. - 3. Fiber Optic Communications Joseph C. Palais, 4th Edition, Pearson Education, 2004. PRINCIPAL S.R.K.R. ENSO. College BHIMAVARAM-834 204. #### MICROWAVE
ENGINEERING AND OPTICAL COMMUNICATION LAB Sessionals : 50 : 3 Periods Ext. Marks : 50 Credits : 2 Course Objectives: The aim of this course is to - 1. Know about behaviour of Microwave Components. - 2. To study the characteristics of microwave oscillators. - 3. To analyze the characteristics and parameters of various microwave components. - 4. To Study the radiation pattern of dipole and Yagi-uda antennas. - To study the performance parameters of optical source and detector and also plot the loss characteristics. Course Outcomes: After the completion of the course, students will be able to: 1. Make use of microwave equipment. Lab Exam - 2. Able to understand microwave measurements. - 3. Measure performance of simple microwave circuits and devices. - 4. Analyze the radiation patterns of antennas. - 5. Assess the performance of optical devices. #### LIST OF EXPERIMENTS - 1. Measurement of Frequency and Guide Wavelength - 2. Volt-Ampere characteristics of Gunn Diode - 3. Measurement of Low VSWR and Unknown Load Impedance - 4. Mode Characteristics of Reflex Klystron - 5. Study of Directional Coupler Parameters - 6. Measurement of losses in Optical Fiber - 7. Measurement of Numerical Aperture - 8. Study of Analog fiber Optic link - 9. Study of Radiation pattern of Dipole Antenna in E-plane - 10. Study of Radiation pattern of Dipole Antenna in H-plane - 11. Study of Radiation pattern of Yagi-Uda Antenna in E-plane - 12. Study of Radiation pattern of Yagi-Uda Antenna in H-plane #### References: 1. Lab Manual PRINCIPAL DE DE DE LA COMPANSION C #### DIGITAL COMMUNICATION LAB Lab : 3 Periods Sessionals 50 Exam : 3 Hrs. Ext. Marks 50 Credits 2 #### **Course Objectives:** - 1. To know the steps involved in the analysis of digital communication systems. - 2. To know how to synthesize a digital communication module with the given specifications. - This course gives students deep knowledge in digital communication systems at the Practical level. - 4. To learn the fundamental concepts of Pulse modulation and digital modulation techniques. - 5. To understand the building blocks of digital communication system. #### **Course Outcomes:** At the end of the course the student will - 1. Be able to understand basic theories of Digital communication system in practical. - 2. Be able to design and implement different modulation and demodulation techniques. - 3. Be able to Perform the time and frequency domain analysis of the signals in a digital communication system. - 4. Develop the skill to analyze and implement analogue to digital converters like PCM, DM. - Have the ability to design pass band digital modulation systems and techniques with desired specifications #### LIST OF EXPERIMENTS - 1. Sampling theorem Verification. - 2. Pulse Amplitude Modulation (PAM) and Demodulation. - 3. Pulse Width Modulation (PWM) and Demodulation. - 4. Pulse Position Modulation (PPM) and Demodulation. - 5. Pulse Code Modulation (PCM) and Demodulation. - 6. Differential Pulse Code Modulation (DPCM) and Demodulation. - 7. Delta Modulation (DM) and Demodulation. - 8. Phase Shift Keying (PSK). - 9. Frequency Shift Keying (FSK). - 10. Analog to Digital and Digital To Analog Conversion. #### References: 1. Lab Manual H. Magazall Mej S.R.K.R. Engg. College S.R.K.R. Engg. College BULMAVARAM-534 204. #### PROJECT PHASE-I Lab : 3 Periods Sessionals 50 Credits 2 #### **Course Outcomes:** - 1. Identify a current problem through literature/field/case studies and define the background objectives and methodology for solving the same. - 2. Write report and present it effectively. The phase-I of the project shall comprise of - · Problem identification in close collaboration with industry. - · Literature survey. - · Deriving work content and carry out of project requirement analysis. - Submission of interim report. - Presentation to an expert committee. (Note: Sessionals 50 marks will be awarded based on Continuous evaluation - 25 Marks Seminar and Viva voce - 25 Marks.) H. Dagapash. de je PRINCIPAL S.R.K.R. Engg. College SUMAYARAM-634 204. #### SCHEME OF INSTRUCTION & EXAMINATION (Regulation R16) #### IV/IV B.TECH (With effect from 2016-2017 Admitted Batch onwards) Under Choice Based Credit System # ELECTRONICS AND COMMUNICATION ENGINEERING II-SEMESTER | Code
No. | Course | Credits | Lecture
Hrs | Tutori
al
Hrs | Lab
Hrs | Total
Contact
Hrs/
Week | Sessio
nal
Marks | Exam
Mark
s | Total
Marks | |----------------|---------------------------------------|---------|----------------|---------------------|------------|----------------------------------|------------------------|-------------------|----------------| | B16 EC
4201 | Cellular and Mobile
Communications | 4 | 3 | 1 | .= | 4 | 30 | 70 | 100 | | B16 EC
4202 | Computer Networks | 4 | 3 | 1 | nei | 4 | 30 | 70 | 100 | | # ELE-III | ELECTIVE-III | 4 | 3 | 1 | - | 4 | 30 | 70 | 100 | | B16 EC
4208 | Project Phase-II | 12 | (=); | - | 9 | 9 | 50 | 100 | 150 | | | Total | 24 | 9 | 3 | 9 | 21 | 140 | 310 | 450 | | | B16 EC 4203 | Internet of things. | | |-----------|-------------|-----------------------------------|--| | | B16 EC 4204 | Digital System design Through HDL | | | # ELE-III | B16 EC 4205 | Bio Medical Signal Processing. | | | | B16 EC 4206 | Satellite Communication | | | | B16 EC 4207 | Digital TV | | H. Magazall. De jo S.R.K.R. ENGO. COILOGO S.R.K.R. ENGO. 334 204. #### CELLULAR AND MOBILE COMMUNICATIONS Theory : 3 Periods Sessionals : 30 Tutorial : 1 Period Ext. Marks : 70 Exam : 3 Hrs. Credits : 4 #### **Course Objectives:** - 1. To make students familiar with fundamentals of mobile communication systems. - 2. To understand and identify the problems and services of mobile communication systems. - 3. To understand multiple access techniques (TDMA/FDMA/CDMA etc.) to reduce the interference effect in mobile communications. - 4. To understand the basic implementations of GSM system. - 5. To have an insight into the various propagation models and different path loss models. #### **Course Outcomes:** - 1. Students are able to understand the fundamentals of mobile communication systems. - 2. Students are able to identify the problems and there remedies in wireless mobile communications. - 3. Students are able to analyze multiuser systems with the help of different multiplexing techniques. - 4. Students are able to understand the basics of GSM mobile communication standard, its architecture. - Students are able to understand the various mobile propagation channel models and path loss models. #### **SYLLABUS** **Introduction to Mobile and Cellular Communication Systems:** Introduction to wireless communications, examples of wireless communication systems, the cellular concept and system design fundamentals. #### Elements of Cellular Radio Systems and Handoff Technologies: Frequency reuse, Channel assignment strategies, Handoff strategies, Interference and system capacity, Trunk and grade services, Methods for improving coverage and capacity in cellular system. #### **Multiple Access Techniques:** Multiple access techniques for wireless communications FDMA, TDMA, Spread Spectrum techniques, SDMA, Packet Radio, CSMA, capacity of Cellular CDMA with multiple cells and capacity of SDMA. 12 #### GSM: Wireless systems and standards, AMPS, IS-94, GSM traffic, Examples of GSM cell, Frame structure of GSM cell, details of forward and reverse CDMA channels. Mobile Radio Propagation: Introduction to mobile radio propagation, free space propagation models, Large scale path loss, Reflection, Diffraction, Scattering, Outdoor and Indoor propagation models. #### **Text Books:** - Wireless Communications Principles and Practice, Second Edition, THEODORE S.RAPPAPORT. - 2. Wireless and Cellular Communications by WILLIAM.C.Y.LEE #### **Reference Books:** - 1. Wireless digital Communications, DR. KAMILO FEHER. - 2. Electronic Communication system, WAYNE TOMASI. - 3. Wireless Communications, SANJAY SHARMA. H. Dagapall. De à PRINCIPAL S.R.K.R. Engg. College BHIMAVARAM-634 204. #### COMPUTER NETWORKS | Theory | : 3 Periods | Sessionals | 30 | |----------|-------------|------------|----| | Tutorial | : 1 Period | Ext. Marks | 70 | | Exam | : 3 Hrs. | Credits | 4 | #### Course Objectives: - 1. To familiarize with the fundamental concepts of computer networking and network - 2. Reference models. - 3. To introduce basic concepts of analog and digital transmission techniques, switching techniques. - 4. To understand error control and flow control mechanisms. - 5. To familiarize with different multiple access protocols such as ALOHA, CSMA. - 6. To familiarize with different networking devices and congestion control algorithms. - 7. To familiarize with TCP and UDP header formats. #### Course Outcomes: Upon completion of the course, students will be able to - 1. Explain basic computer network principles and layers of the OSI model and TCP/IP. - 2. Explain the concepts of transmission media, switching and multiplexing techniques. - 3. Explain and analyse the error control and flow control methods. - Explain different multiple access control protocols and IEEE standards for LANs and MANs. - Identify the different types of connecting devices and explain the basic concepts of congestion control algorithms and internetworking. - 6. Explain TCP and UDP header formats. #### **SYLLABUS** Uses of Computer Networks, Line Configuration, Topology, Transmission mode, Categories of Networks-LAN, MAN, WAN; Network Software- Protocol Hierarchies, Design issues of layers, Connection Oriented and Connectionless services; Reference Models- The OSI Reference Model, The TCP/IP Reference Model, The B-ISDN ATM Reference Model. Theoretical basis for Data communication, Transmission media- Guided and Unguided Transmission media; The Telephone System-Structure of Telephone system, Trunks and Multiplexing, Frequency Division Multiplexing, Time Division Multiplexing, Switching- Circuit H. Dagapall. dej S.R.K.R.
Engg. College BHIMAVARAM-834 244 Switching, The Switch Hierarchy, Crossbar switches, Space Division Switches, Time Division Switches; Narrow band ISDN, Broadband ISDN and ATM- Virtual Circuits versus Circuit Switching. #### DATA LINK LAYER Design issues, Error Detection and Correction, Elementary Data link protocols, Sliding window protocols, HDLC, **Medium access sub layer**-The Channel allocation problem, Multiple Access Protocols-ALOHA, Carrier Sense Multiple Access protocols; IEEE standard for 802 LANs, Satellite Networks #### NETWORK LAYER Design considerations, Difference between Gateways, Ethernet switch, Router, Hub, Repeater, Congestion Control algorithms- General principles of Congestion Control, Congestion prevention policies. The Leaky bucket algorithm and Token bucket algorithm, The Network Layer in the Internet-The IP Protocol, IP Addresses. #### TRANSPORT LAYER The Transport layer Service, Elements of Transport protocols, The Internet Transport Protocols-UDP, TCP. #### APPLICATION LAYER The Domain Name System, Electronic mail, The World Wide Web. #### **Text Books:** - 1. Data Communications and Networking by BehrouzA.Forouzan, 2nd edition, Tata McGraw Hill. - 2. Computer Networks Andrew S Tanenbaum, 3rd Edition, Pearson Education/PHI. #### Reference Books: - 1. An Engineering Approach to Computer Networks-S.Keshav, 2nd Edition, Pearson Education - 2. Understanding communications and Networks, 3rd Edition, W.A. Shay, Thomson S.R.K.R. Engg. College BHIMAVARAM-834 204. H. Jagapall de je # INTERNET OF THINGS (IOT) (Elective-III) Theory : 3 Periods Sessionals 30 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits 4 #### **Course Objectives:** - 1. To assess the vision and introduction about IoT - 2. To understand IoT architecture and application perspective - 4. To understand how the objects interact with people, with information system and with - 2. other objects - 3. To implement hands-on project development to find innovative solutions - 4. To implement data and management to use of devices in IoT #### **Course Outcomes** - 1. Interpret the vision of IoT from a global context - 2. Determine the Iot Architecture and application perspective - 3. Identifying and describing different kinds of Internet-connected product concepts. - 4. Analyzing, designing, and developing prototypes models of Internet-connected products using various tools. - Understanding the challenges and applying right techniques for user-interaction with connected-objects. #### **SYLLABUS** #### Introduction IoT overview, The IoT paradigm, Smart objects, IoT Platforms (like Aurdino, ARM Cortex, Raspberry Pi / Intel Galileo), Bits and atoms, Convergence of Technologies. **Introduction to Internet and web networking basics:** HTTP, Rest, JSON, XML, Interfacing to Cloud Harnessing mobile computing for IoT #### Introduction to Technologies behind IoT: RFID, NFC, Mobil Data Technologies (GPRS, 3G, 4G), Wifi, Powering the IoT using low power wireless technologies like Bluetooth smart technology, Zigbee, WSN. RTLS + GPS, Agents and Multi agent systems. #### IoT Architecture: Machine to Machine, Web of Things, IoT protocols (The Layering concepts ,IoT Communication Pattern, IoT protocol Architecture, The 6LoWPAN - IPv6 over Low power Wireless Personal Area Networks) P. Magarett. De p. S.R.K.R. ENGS. College S.R.K.R. ENGS. 204- #### IoT Applications and issues: Combination scenarios, Breaking assumptions, IoT in retail, IoT in healthcare, IoT in manufacturing. **Prototyping Connected Objects**: Open source prototype platforms, Arduino based internet communication. Integrating and accessing Internet services, Rasberry PI / Beagle board based Gateways, Data Analysis Techniques. #### Case Studies: Case studies from Industry for different verticals like Retail, Healthcare, Home automation etc #### **Text Books:** - 1. 6LoWPAN: The Wireless Embedded Internet, Zach Shelby, Carsten Bormann, Wiley - 2. Internet of Things: Converging Technologies for Smart Environments and Integrated - 3. Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers - 4. Building the Internet of Things. Sara Cordoba, WimerHazenberg, Menno Huisman. BIS Publishers. 2011. #### Reference Books: - 1. Internet of Things: A Hands-On Approach By Arshdeep Bahga, Vijay Madisetti - 2. Fundamentals of Wireless Sensor Networks: Theory and Practice By Waltenegus Dargie, Christian Poellabaue P. Magapall. Ne j. #### DIGITAL SYSTEM DESIGN THROUGH HDL #### (Elective-III) Sessionals : 30 Theory : 3 Periods : 70 **Tutorial** : 1 Period Ext. Marks Credits : 4 : 3 Hrs. Exam #### **Course Objectives:** - 1. Learn basic digital design paradigms and the necessary Verilog HDL constructs that would help them to build combinational & sequential logic circuits and run simulations using CAD tools. - 2. Design functional units including adders, multipliers, ROMs, SRAMs, and PLAs - 3. Testing of logic circuits using different design techniques. #### **Course Outcomes:** Upon completion of the course, students will be able to - 1. To understand and design complex digital systems at several level of abstractions. - 2. To create circuits that realizes specified digital functions. - 3. To identify logic and technology-specific parameters to control the functionality - 4. To design and model complex digital system - 5. To verify several digital circuits using different techniques. #### **SYLLABUS** #### Digital Logic Design using VHDL Introduction, designing with VHDL, design entry methods, logic synthesis, entities, architecture, packages and configurations, types of models: dataflow, behavioural, structural, signals vs. variables, generics, data types, concurrent vs. sequential statements , loops and program controls. #### Combinational Logic Circuit Design using VHDL Combinational circuits building blocks: Multiplexers, Decoders, Encoders, Code converters, Arithmetic comparison circuits, VHDL for combinational circuits, Adders-Half Adder, Full Adder, Ripple-Carry Adder, Carry Look-Ahead Adder, Subtraction, Multiplication. Sequential Logic Circuit: Design using VHDLFlip-flops, registers & counters, synchronous sequential circuits: Basic design steps, Mealy Statemodel, Design of FSM using CAD tools, Serial Adder Example. #### Digital Logic Design using Verilog HDL Introduction, Verilog Data types and Operators, Binary data manipulation, Combinational Structural Models of Combinational Logic, andSequential logic design, Simulation, Design Verification and Test Methodology, Propagation Delay, Truth Table models using Verilog. P. Dagapall wije #### Digital Logic Circuit Design Examples using Verilog HDL Behavioralmodeling , Data types, Boolean-Equation-Based behavioral models of combinationallogics, Propagation delay and continuous assignments, latches and level-sensitive circuits inVerilog, Cyclic behavioral models of flip-flops and latches and Edge detection, comparison ofstyles for behavioral model; Behavioral model, Multiplexers, Encoders and Decoders, Counters, Shift Registers, Register files, Dataflow models of a linear feedback shift register. #### **Testing of Digital Logic Circuit Design** Machines withmulti cycle operations, ASM and ASMD charts for behaviouralmodeling. Testing of logic circuits, fault model, complexity of a test set, path-sensitization, circuits with tree structure, random tests, Testing of sequential circuits, Built in self test. #### Text books: - 1. Stephen Brown &ZvonkoVranesic, ||Fundamentals of Digital logic design with VHDL||, TataMcGraw Hill,2nd edition. - 2. Michael D. Ciletti, —Advanced digital design with the Verilog HDLl, Eastern economy edition, PHI. #### Reference books: - 1. Stephen Brown & Zvonko Vranesic, | Fundamentals of Digital logic with Verilog design|, Tata McGraw Hill,2nd edition. - 2. J.Bhaskar, |VHDL Primer|,3rd Edition, PHI Publications. - 3. Ian Grout, -Digital systems design with FPGAs and CPLDsl, Elsevier Publications. H. Magagash. Wij ## BIO MEDICAL SIGNAL PROCESSING (Elective-III) | Theory | : 3 Periods | Sessionals | 30 | |----------|-------------|------------|----| | Tutorial | : 1 Period | Ext. Marks | 70 | | Exam | : 3 Hrs. | Credits | 4 | #### Course Objectives: The objectives of this course are to: - 1. Describe the origin, properties and suitable models of important biological signal such as ECG and EEG. - 2. Introduce students to basic signal processing techniques in analyzing biological signals. - Develop the mathematical and computational skills relevant to the field of biomedical signal processing. - 4. Develop thorough understanding on basics of ECG signal compression algorithms. - 5. Increasethestudent's awareness of the complexity of various biological phenomena and cultivate an understanding of the promises, challenges of the biomedical engineering. #### Course outcomes: At the end of the course, students will be able to: - 1. Possess the basic mathematical skills necessary to analyse ecg and eeg signals. - 2. Possess the basic scientific skills necessary to analyse ecg and eeg signals. - 3. Possess the basic computational skills necessary to analyse ecg and eeg signals. - 4. Applyclassicalandmodernfilteringandcompressiontechniquesforecgand eeg signals. - 5. Developathoroughunderstandingonbasicsofecgandeegfeatureextraction. #### **SYLLABUS** #### **Introduction to Biomedical Signals** The nature of Biomedical Signals, Examples of Biomedical Signals, Objectives and difficulties in biomedical analysis, Electrocardiography: Basic electrocardiography, ECG lead systems, ECG signalcharacteristics, Simple signal conversion systems, Conversion requirements for biomedical signals, Signal conversion circuits #### Signal Averaging and Adaptive Noise cancelling Basics of signal averaging, signal averaging as adigital filter, atypical averager, software for signal averaging, limitations of signal averaging. Principal noise canceller model, 60-Hz adaptive cancelling using a sine wave model, other applications of adaptive filtering
Data Compression Techniques Turning point algorithm, AZTEC algorithm, Fan algorithm, Huffman coding, data reduction algorithms The Fourier transform, Correlation, Convolution, Power spectrum estimation, Frequency domain analysis of the ECG PRINCIPAL S.R.K.R. Engg. College Cardiological signal processing Basic Electrocardiography, ECG data acquisition, ECG lead system, ECG signal characteristics (parameters and their estimation), Analog filters, ECG amplifier, and QRS detector, Power spectrum of the ECG, Band pass filtering techniques, Differentiation techniques, Template matching techniques, A QRS detection algorithm, Real-time ECG processing algorithm, ECG interpretation, ST segment analyzer, Portable arrhythmia monitor Neurological signal processing and Analysis of EEG signals The brain and its potentials, the electrophysiological origin of brain waves, The EEG signal and its characteristics (EEG rhythms, waves, and transients), Correlation, Detection of EEG rhythms, Template matching for EEG, spike and wave detection #### **Text Books:** - 1. Biomedical Digital Signal Processing- Willis J. Tompkins, PHI2001. - Biomedical Signal Processing Principles and Techniques- D C Reddy, McGraw- Hill publications 2005 #### **Reference Books:** 1. Biomedical Signal Analysis-Rangaraj M. Rangayyan, John Wiley & Sons 2002. f. Magagall. De à ## SATELLITE COMMUNICATION (Elective-III) | Theory | : 3 Periods | Sessionals | 30 | |-----------------|-------------|------------|----| | Tutorial | : 1 Period | Ext. Marks | 70 | | Exam | : 3 Hrs. | Credits | 4 | #### Course objectives: The student will be introduced to - 1. Functionality of KEPLAR'S laws planetary motion. - 2. Be aware of space segment equipment. - 3. To know the Principles of deploying earth station. Understand various parameters of link design. - 4. Analyse the various multiple access techniques #### Course outcomes: After going through this course the student will be able to - 1. Choose necessary components required in modern satellite communications systems. - 2. Design and build space segment, depending upon the requirement. - 3. Design link margin for various applications. - Choose the correct multiple access technique for better communication with minimum losses. - 5. Design, build, and demonstrate satellite communication link in the laboratory. #### **SYLLABUS** #### SATELLITE ORBITS Kepler"s Laws, orbital parameters, orbital perturbations, station keeping, geo stationary and non-Geo-stationary orbits — Look Angle Determination- Limits of visibility, eclipse-Sub satellite point, Sun transit outage-Launching Procedures - launch vehicles and propulsion. #### SPACE SEGMENT Spacecraft Technology- Structure, Primary power, Attitude and Orbit control, Thermal control and Propulsion, communication Payload and supporting subsystems, Telemetry, Tracking and command. #### EARTH SEGMENT The earth station - HPA - Downlink - Output back off - Satellite TWTA output - Effects of rain - Uplink rain - Fade margin - Downlink rain - Fade margin - Combined uplink and downlink C/N ratio . 22 P. Magapall. Nej PRINCIPAL S.R.K.R. Engg. College SHIMAVARAM-534 204 #### SATELLITE ACCESS Modulation and Multiplexing: Voice, Data, Video, Analog – digital transmission system, Digital video Broadcast, multiple access: FDMA, TDMA, CDMA, Assignment Methods, Spread Spectrum communication. #### SATELLITE APPLICATIONS INTELSAT Series, INSAT, VSAT, Mobile satellite services: GSM, GPS, LEO, MEO, Satellite Navigational System. Direct Broadcast satellites (DBS)- Direct to home Broadcast (DTH), Digital audio broadcast (DAB)- World space services. #### Text books: - Satellite Communication, by Timothy Pratt, Charles Bostian, Jeremy Allnutt(Second Edition), John Wiley & Sons. - Satellite Technology, Principles and Applications, by Anil K. Maini, VarshaAgarwal(Second Edition), Wiley. #### **Reference Books:** - 1. Satellite Communications, by Dennis Roddy(Fourth edition), McGraw Hill. - 2. Satellite Communication Systems Engineering, by Wilbur L. Pritchard, Henri G. Suyderhoud, Robert A. Nelson (Second Edition), Pearson PRINCIPAL S.R.K.R. Engg. College S.R.K.R. Engg. College ff. magazall. de je ## DIGITAL TV (Elective-III) | Theory | : 3 Periods | Sessionals | 30 | |-----------------|-------------|------------|----| | Tutorial | : 1 Period | Ext. Marks | 70 | | Exam | : 3 Hrs. | Credits | 4 | #### Course objectives: The student will be introduced to - 1. Functionality of video principles. - 2. Be aware applications of TV transport system. - 3. To know need for migration to digital TV. - 4. Analyse the various video compression techniques - 5. Understand different video formats. #### Course outcomes: After going through this course the student will be able to - 1. Choose necessary components required in modern digital TV systems. - 2. Design a TV transport system. - 3. Design necessary formats for various applications. - 4. Choose the correct compression format of available. - 5. Design, build, and demonstrate digital TV transmission in the laboratory. #### **SYLLABUS** #### Fundamentals of video principals: Principals of color vision, the CIE color system, applications of visual properties, Essential video system characteristics, the principals of video compression. #### Digital TV standards: DTV audio encoding and decoding, DTV transport system, DTV satellite transmission, DTV data broad casting. #### Advanced Television (ATV) Concepts: Why the industry is moving to DTV, Standardization efforts towards a single Standard, the ATV emergence, the digital solution, interoperability, flexibility. #### DTV picture formats: HDTV formats, Data multiplexing, HANC multiplexing. #### Digital signal compression: video compression standards, video data structure hierarchy, JPEG and motion JPEG schemes, MPEG-1.MPEG-2 video schemes. PRINCIPAL S.R.K.R. Engg. Colleg BHIMAVARAM-534 204. 24 #### Text books: - Digital TV fundamentals, by Michael Robin and Michael Poulin (second edition), McGrawHill. - Digital Television: A Practical Guide for Engineers, Walter Fischer and H. vonRenouard, Springer-Verlag, 2004 #### Reference Books: - 1. R. R. Gulati, Modern Television Practice, Principles, Technology and servicing, , 2nd edition, New Age International Publishers, 2001. - 2. 2. Gerald w. Collins, Fundamentals of Digital Television Transmission', John Wiley, 2001. PRINCIPAL COILOGO Code: B16EC4208 #### PROJECT PHASE-II LAB: 9 Periods Sessionals 50 Ext. Marks 100 Credits 12 #### **Course Outcomes:** - 1. Identify a current problem through literature/field/case studies and define the backgroundobjectives and methodology for solving the same. - 2. Analyze, design and develop a technology/ process. - 3. Implement and evaluate the technology at the laboratory level. - 4. Write report and present it effectively. # The phase-II of the project shall consists of Implementing, Testing and validation. Report Writing. Sessionals (50 Marks) will be awarded by the Project Guide based on continuous evaluation. External Evaluation (100 marks) of project report and viva voce will be conducted by a committee consisting of HOD, Guide and External Examiner. May be carried out using in-house facilities or in an industry by specified number of students in agroup. #### Format for Preparation of Project Thesis for B. Tech: - 1. Arrangement Of Contents: The sequence in which the project report material should bearranged and bound should be as follows: - 1. Cover Page & Title Page. - 2. Bonafide Certificate - 3. Abstract. - 4. Table of Contents - 5. List of Tables - 6. List of Figures - 7. List of Symbols, Abbreviations and Nomenclature - 8. Chapters - 9. Appendices - 10. References *The table and figures shall be introduced in the appropriate places. # SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS) (Affiliated to JNTUK, Kakinada), (Recognised by AICTE, New Delhi) Accredited by NAAC with _A' P. Dagapall. Nej. 8.R.K.R. Engg. College # GradeRecognised as Scientific and Industrial Research Organisation CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204 # SCHEME OF INSTRUCTION & EXAMINATION (Regulation R17) III/IV B.TECH (With effect from 2017-2018 Admitted Batch onwards) Under Choice Based Credit System # ELECTRONICS AND COMMUNICATION # **ENGINEERINGI-SEMESTER** | Code No. | Name of the Subject | Credits | Lecture
Hrs | Tutorial
Hrs | Lab
Hrs | Contact
Hrs/
Week | Internal
Marks | External
Marks | Total
Marks | |----------------|--|---------|----------------|-----------------|------------|-------------------------|-------------------|-------------------|----------------| | B17 EC
3101 | Pulse and Digital
Circuits | 3 | 3 | 1 | 3 | 4 | 30 | 70 | 100 | | B17 EC
3102 | Linear ICs and
Applications | 3 | 3 | 1 | | 4 | 30 | 70 | 100 | | B17 EC
3103 | Electronic
Measurements And
Instrumentation | 3 | 3 | 1 | (44) | 4 | 30 | 70 | 100 | | B17 EC
3104 | Digital
Communication | 3 | 3 | 1 | | 4 | 30 | 70 | 100 | | B17 EC
3105 | Antennas and
Propagation | 3 | 3 | 1 | | 4 | 30 | 70 | 100 | | B17 EC
3106 | Computer Network
Engineering | 3 | 3 | 1 | 722 | 4 | 30 | 70 | 100 | | B17 EC
3107 | Linear Integrated
Circuits and Pulse
Circuits Lab with
Simulation | 2 | | | 3 | 3 | 50 | 50 | 100 | | B17 EC
3108 | Digital ICs
Laboratory with
simulation | 2 | | | 3 | 3 | 50 | 50 | 100 | | B17 BS
3101 | Problem Solving & Linguistic Competence | 1 | | 3 | | 3 | 30 | 70 | 100 | | B17 BS
3102 | Basic Coding | 1 | | | 3 | 3 | 50 | 50 | 100 | | Total | | 24 | 18 | 9 | 9 | 36 | 360 | 640 | 1000 | PRINCIPAL S.R.K.R. ENGG. College BHIMAVARAM-934 204. #### PULSE AND DIGITAL CIRCUITS Lecture : 3 Periods Int. Marks : 30 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits 3 # Course Objectives: The main objectives of this course are: 1. To provide insight of the
applications of Integrator, differentiator circuits. 2. To introduce the design of various clippers circuits and to provide insight of the applications of clamper circuits. - 3. To introduce the analysis of various Bistable, Monostable, Astable Multivibrators and Schmitt trigger for various applications. - 4. To introduce various Time Base Generators. - 5. To provide insight of the synchronization techniques for sweep circuits and to provide insight of different logic families; realize logic gates using diodes and transistors. # **Course Outcomes:** By the end of the course the learners (students) will be able to: - 1. Understand the applications of Integrator, differentiator circuits. - 2. Design of different clipping circuits and understand the applications clamper circuits. - 3. Analyze different Bi-stable, Monostable, AstableMultivibrators and Schmitt trigger for various applications. - 4. Understand Different Time Base Generators. - 5. Analyze synchronization techniques for sweep circuits and to understand different logic families; realize logic gates using diodes and transistors. #### **SYLLABUS** #### **UNIT-I: Linear Wave Shaping:** High pass, low pass RC circuits-response to sinusoidal, step, pulse, square and ramp inputs, The High pass RC circuit as a differentiator and the Low pass RC circuit as an integrator, Attenuators. # UNIT-II: Non-linear wave shaping: Diode clippers, Clippers at two independent levels, Transfer characteristics of clippers, Transistor clipper, Emitter coupled clipper, Clamping operation, diode clamping circuits with source resistance and diode resistance -transient and steady state response for a square wave input, clamping circuit theorem. #### UNIT-III: Bi-stable multi vibrators: Transistor as a Switch, Transistor switching timings, A basic binary circuit-explanation. Fixed-bias transistor binary, self-biased transistor binary, binary with commutating capacitors-analysis, Non-saturated binary-symmetrical triggering, and Schmit ttrigger circuitemitter coupled binary circuit. Mono-stable multi vibrator: Basic circuit-collector coupled monostable multivibratorexplanation. #### UNIT-IV: Time -Base Generators: Voltage sweep -- Simple Exponential sweep Generator. Errors that define Deviation from linearity, UJT Relaxation Oscillator - Methods of linearising a Voltage Sweep - Bootstrap and Miller Circuits - Current Sweep - Linearising a current Sweep by adjusting the driving Waveform. # UNIT-V: Synchronization and frequency division: Pulse synchronization of relaxation devices, frequency division in the sweep circuit, Synchronization of Astable multivibrator, Monostable multivibrator, synchronization frequency division with a sweep circuit. Digital logic Families: Introduction, RTL,DTL, TTL, ECL, NMOS logic, PMOS logic, CMOS logic-analysis ### Text Books: - 1. Pulse, Digital and switching wave forms by Milliman and Taub, McGraw Hill. - 2. Pulse and Digital Circuits by A. Anand Kumar, PHI. #### Reference Books: - 1. Pulse and Digital Circuits by MS PrakashRao, Tata McGraw Hill. - Pulse and Digital Circuits by Venkatrao K., Ramasudha K., Manmadharao. G, Pearson Education, 2010. PRINCIPAL S.R.K.R. Engg. College BHIMAVARAM-634 204 #### LINEAR ICS AND APPLICATIONS Lecture : 3 Periods Int. Marks 30 Tutorial : 1 Period Ext. Marks : 70 Exam : 3 Hrs. Credits 3 ## **Course Objectives:** - 1. To understand the internal diagram and characteristics of operational amplifier. - 2. To learn about the linear and non-linear applications of operational amplifier. - 3. To know the concepts of Active filters and waveform generator - 4. To understand the industrial applications using 555 timer, PLL. - 5. To understand the concepts of Analog to Digital Converters and Digital to Analog Converters ## Course Outcomes: Upon completion of the course, students will be able to - 1. Understand the external behavior and characteristics of operational amplifier. - 2. Design and analyze linear and non-linear circuits using operational amplifier. - 3. Design and analyze oscillators and active filters using operational amplifier. - 4. Design and analyze various applications using IC 565 and IC 555. - 5. Understand the operation of Analog to Digital and Digital to Analog Converters. #### **SYLLABUS** **UNIT-I: Applications of Operational Amplifiers:** Basics of Op-Amp, Block Diagram, open loop and closed loop op-amp compensation Techniques, Logarithmic Amplifier, configurations, Frequency Instrumentation Amplifiers, Voltage to Current and Current to Voltage Converters. Op-amp As a Comparators, Schmitt trigger, Wave form Generators, Sample and Hold Circuits, Rectifiers, Peak Detection #### UNIT-II: Active Filters: Butterworth type LPF, HPF, BPF, BEF, All-pass Filters, Higher Order Filters and their Comparison, Switched Capacitance Filters. #### UNIT-III: Oscillators: Op-Amp Phase Shift, Wien-bridge and Quadrature Oscillator, VoltageControlled Oscillators, Analog Multiplexers. UNIT-IV: Special ICs: 555 Timers, 556 Function Generator ICs and their Applications, Three Terminal IC Regulators, IC 565 PLL and its Applications, Voltage to Frequency and Frequency to Voltage Converters. UNIT-V: Digital to Analog and Analog to Digital Converters: DAC techniques, Weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, Different types of ADCs-parallel Comparator type ADC, Counter type ADC, Successive approximation ADC and ADC specifications. P. Dagagash aig PRINCIPAL S.R.K.R. Engs. College MHIMAVARAM-834 204. # Text Books: - 1. Microelectronics- Jacob Millman. - 2. Op-Amps and Linear ICs- RamakanthGayakwad, PHI, 1987. - 3. Linear Integrated Circuits- D.RoyChowdhury, New Age International(p) Ltd, 2nd Edition, 2003. # Reference Books: - 1. Integrated Circuits- Botkar, Khanna Publications. - 2. Applications of Linear ICs- Clayton. PRINCIPAL S.R.K.R. Engg. College NAMAN-534 204. #### 3103ELECTRONIC MEASUREMENTS AND #### INSTRUMENTATION Lecture: 3 PeriodsInt. Marks: 30Tutorial: 1 PeriodExt. Marks: 70Exam: 3 Hrs.Credits: 3 #### Course Objectives: The student will - 1. Select the instrument to be used based on the requirements. - 2. Understand and analyze different signal generators and analyzers - 3. Understand the design of oscilloscopes for different applications. - 4. Understand the principle of operation and working of various types of bridges for - 5. measurement of parameters #### Course Outcomes: The student will be able to - 1. Evaluate basics of measurement systems, principle of basic meter - 2. Evaluate how a signal can be generated using different types of meters. - 3. Investigate a signal / waveform with different oscillators. - 4. Use bridges of many types and measure appropriate parameters. - 5. Design different transducers for measurement of different parameters. #### **SYLLABUS** #### UNIT-I: Performance characteristics of instruments, Static characteristics, Accuracy, Resolution, Precision, Expected value, Error, Sensitivity.Errors in Measurement, Dynamic Characteristics-speed of response, Fidelity, Lag and Dynamic error. DC Voltmeters-Multirange, Range extension voltmeters, AC voltmeters, True RMS responding voltmeter, Electronic Multimeter. # UNIT-II: Transducers- active & passive transducers: Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers, Resistance Thermometers, Thermocouples, Thermistors, Sensistors. Introduction to smart sensors. #### UNIT-III: Oscilloscopes CRT features, vertical amplifiers, horizontal deflection system, sweep, trigger pulse, delay line. Dual beam CRO, .Dual trace oscilloscope, sampling oscilloscope, digital storage oscilloscope, Lissajous method of frequency measurement, standard specifications of CRO. #### UNIT-IV: AC Bridges Measurement of inductance- Maxwell's bridge, Anderson bridge. Measurement of capacitance –Schearing Bridge. Wheatstone bridge. Wien Bridge, Errors and precautions in using bridges. PRINCIPAL PRINCIPAL S.R.K.R. ENGS. 534 204. BHIMAVARAM-534 204. # UNIT – V: Signal Generator- fixed and variable, AF oscillators, Standard and AF sine and square wave signal generators, Function Generators, Square pulse, Random noise, sweep, Arbitrary waveform. Wave Analyzers, Harmonic Distortion Analyzers, Spectrum Analyzers. #### Text Books: - 1. Electronic instrumentation, second edition H.S.Kalsi, Tata McGraw Hill, 2004. - 2. Modern Electronic Instrumentation and Measurement Techniques A.D. HelfrickandD.W. Cooper, PHI, 5th Edition, 2002. #### Reference Books: - 1. Electronic Instrumentation & Measurements David A. Bell, PHI, 2nd Edition, 2003. - 2. Electronic Test Instruments, Analog and Digital Measurements Robert A.Witte, PearsonEducation, 2nd Ed., 2004. PRINCIPAL S.R.K.R. Engg. College P. nagagall. de je #### DIGITAL COMMUNICATION Lecture : 3 Periods Int. Marks 30 **Tutorial** : 1 Period Ext. Marks : 70 Exam : 3 Hrs. Credits 3 #### **Course Objectives:** - 1. To introduce the elementary concepts of digital communication systems. - 2. To get introduced with emphasis on different modulation techniques. - 3. Understand the effect of noise on signal transmission. - 4. To learn about optimum detection and probability of error. - 5. To compare the performance of two digital modulation techniques and introduce the elementary concept of spread spectrum modulation system. #### Course Outcomes: By the end of the course the learners (students) will be able to - 1. Understand the basic concepts of sampling and digital communication systems. - 2. Understand the concept of binary and M-ary modulation techniques. - 3. Understand the problems of noise and can design any digital communication system for the real time environment. - 4. Designing of optimal receiver and understanding the concept of probability of error. - 5. Analyze the error performance of two digital modulation techniques and understand the concept of spread spectrum communication system #### **SYLLABUS** # UNIT-I: Pulse Modulation and Digital Representation of Analog Signal: Sampling, Pulse
Amplitude Modulation and Concept of Time Division Multiplexing, Pulse Width Modulation, Pulse Position Modulation, Digital representation of analog signal: Quantization of signals, Quantization error, Pulse Code Modulation, Companding, T1 Digital system, Differential Pulse Code Modulation, Delta Modulation, Adaptive Delta Modulation, Continuously Variable Slope Delta Modulation. # UNIT-II: Digital Modulation and Transmission: Binary Phase-Shift Keying, Differential Phase-Shift Keying, Differentially-Encoded PSK (DEPSK), Quadrature Phase-Shift Keying (QPSK), M-ary PSK, Binary Frequency Shift-Keying, Comparison of BFSK and BPSK, M-ary FSK, Minimum Shift Keying (MSK), Duobinary Encoding. #### UNIT-III: Mathematical Representation of Noise: Some Sources of Noise, Frequency-domain representation of Noise, Spectral Components of Noise, Response of a Narrowband Filter to Noise, Effect of a Filter on the Power Spectral Density of Noise, Superposition of Noises, Linear Filtering, Noise Bandwidth, Quadrature Components of Noise, Power Spectral Density of Quadrature Components of Noise. UNIT-IV: Optimal Reception of Digital Signal: A Base-band Signal Receiver, Probability of Error, Optimum Receiver for both Baseband and Passband - Calculation of optimum filter Transfer function, Optimum filter realization using Matched filter, Probability of Error of the Matched Filter, Optimum filter realization using Correlator, Optimal of Coherent Reception: PSK, FSK, QPSK, Comparison of Modulation Systems. H. Magapall de je S.R.K.R. ENGG. 534 294 # UNIT-V: Noise in Pulse Code Modulation and Delta Modulation Systems: PCM Transmission, Calculation of Signal-to-Noise Ratio in PCM, Delta Modulation(DM) Transmission, Calculation of Signal-to-Noise Ratio in DM, Comparison of PCM and DM. Introduction to Spread Spectrum Modulation: Direct Sequence (DS) Spread Spectrum, Use of Spread Spectrum with Code Division Multiple Access (CDMA), Ranging using DS Spread Spectrum, Frequency Hopping (FH) Spread Spectrum, Generation and Characteristics of PN Sequences. #### Text Books: - Principles of Communication Systems by Herbert Taub, Donald L Schilling and GoutamSaha,3rd edition, Tata McGraw-Hill Publications, 2008 New Delhi. - 2. Digital Communications by Simon Haykins John Wiley, 2005 ## Reference Books: - 1. Principles of Digital Communications- J.Das, SK.Mullick, P.K.Chatterjee. - 2. Modern Analog and Digital Communications by B.P.Lathi, Oxford reprint, 3rd Edition, 2004. PRINCIPAL COIL-90 # ANTENNAS & PROPAGATION Lecture : 3 Periods Int. Marks 30 Tutorial : 1 Period Ext. Marks : 70 Exam : 3 Hrs. Credits 3 #### **Course Objectives:** - 1. Understand the radiation mechanism of antennas and to learn about basic parameters like impedance, gain, directivity, bandwidth, effective length, beam width and radiation - 2. Derive fields and power radiated by elemental antenna, half wave dipole, quarter wave monopole and values of their radiation resistance. - 3. Understand the necessity of antenna arrays and to learn about theory of uniform linear arrays, broad side and end fire arrays, non-uniform linear arrays like binomial arrays and pattern multiplication. - 4. Have knowledge about practical LF, HF, VHF, UHF and Microwave antennas and be able to design practical antennas. - 5. Have knowledge about various antenna measurements and be able to conduct different types of antenna measurements. - 6. Have knowledge about various types of radio wave propagation like Ground wave, Ionospheric, space wave and Duct propagation and be able to design different types of communication links. #### Course Outcomes: After completion of the course the student will be able to - 1. Understand Radiation mechanism and functions of antennas, identify antenna parameters derive expressions for antenna parameters. - 2. Analyze and design wire and aperture antennas for different applications. - 3. Analyze and design Antenna arrays. - 4. Capable of performing various antenna measurements and come up with conclusions about antenna parameters and performance. - 5. Identify characteristics of radio wave propagation and be able to design different types of communication links for different frequency bands ### **SYLLABUS** #### UNIT-I: Fundamentals of Antennas & Radiation from Antennas: Definition of antennas, functions of Antennas, properties of antennas, antenna parameters, polarization, basic antenna elements, radiation mechanism, radiating fields of alternating current element, radiated power and radiation resistance of current element, different types of current distribution on linear antennas, radiated fields, radiated power and radiation resistance of half-wave dipole and quarter - wave monopole, directional characteristics of dipole antennas. # UNIT-II: Linear Arrays: Uniform linear arrays, field strength of a uniform linear arrays, locations of principal maximum, null and secondary maxima, first side lobe level, analysis of broad side and end fire, Pattern multiplication, binomial arrays, effect of earth on vertical patterns, methods of excitation of antennas, impedance matching techniques, transmission loss between transmitting and receiving antennas – Friis formula, antenna noise temperature and signal-tonoise ratio, Introduction to array synthesis Methods. f. magazall. dej. PRINCIPAL S.R.K.R. Engg. College S.R.K.R. Engg. 634 204. # UNIT-III: Practical Antennas – LF, MF, HF, VHF& UHF antennas Classification of antennas according to type of radiation and type of current distribution of antennas – Isotropic, Omni directional & directional antennas, standing wave and travelling wave antennas, Classification according to frequency of operation – LF, MF, HF, VHF & UHF, brief introduction to LF & MF antennas, earth mat, counterpoise earth, top capacitance hat. **HF, VHF & UHF Antennas** - V Antennas, Inverted V Antennas, Rhombic antennas, folded dipole, Yagi-Uda antenna, Log periodic antenna, Loop and Helical Antennas. #### UNIT - IV: Microwave antennas: Introduction, types of reflector antennas, corner reflector, parabolic reflector, feed systems for parabolic reflector, horn antennas, slot antennas and impedance of slot antennas, Babinet's principle and microstrip antennas. Antenna measurements: Introduction, measurement ranges, antenna impedance measurements, antenna gain and directivity measurement, measurement of radiation pattern, beamwidth and SLL. # UNIT-V: Wave Propagation Types of radio wave propagation, ground wave propagation and Somerfield's analysis of ground wave propagation, wave tilt of ground wave, structure of ionosphere, refractive index of ionosphere, mechanism of wave bending by ionosphere, critical frequency, MUF, Skip distance, fading and remedial measures, effect of earth's magnetic field on ionosphere propagation, faraday rotation, tropospheric (space wave) propagation, range of space wave propagation, effective earth radius, field strength of space wave, atmospheric effects on space wave propagation, duct propagation and scatter propagation. #### Textbooks: - EM waves and Radiating systems by E. C. JORDAN and K. G. Balmain PHI, New Delhi. - 2. Antenna theory- by C. A. Balanis, john wiley. #### Reference Books: - 1. Antennas By J.D. Kraus, McGrawhill. - 2. Antenna and wave propagation by G.S.N Raju, Pearson eduction. PRINCIPAL DE J. S.R.K.R. ENGO. BHIMAVARAM-534 204. #### COMPUTER NETWORK ENGINEERING Lecture : 3 Periods Int. Marks 30 Tutorial : 1 Period Ext. Marks : 70 Exam : 3 Hrs. Credits 3 #### Course Objectives: - To familiarize with the fundamental concepts of computer networking and network engineering reference models. - 2. To introduce basic concepts of analog and digital transmission techniques, switching techniques. - 3. To understand error control and flow control mechanisms. - 4. To familiarize with different multiple access protocols such as ALOHA, CSMA. - 5. To familiarize with different networking devices and congestion control algorithms. - 6. To familiarize with TCP and UDP header formats. # Course Outcomes: Upon completion of the course, students will be able to - 1. Explain basic computer network principles and layers of the OSI model and TCP/IP. - 2. Explain the concepts of transmission media, switching and multiplexing techniques. - 3. Explain and analyze the error control and flow control methods. - Explain different multiple access control protocols and IEEE standards for LANs and MANs. - Identify the different types of connecting devices and explain the basic concepts of congestion control algorithms and internetworking. - 6. Explain TCP and UDP header formats. #### **SYLLABUS** #### UNIT-I Uses of Computer Networks, Line Configuration, Topology, Transmission mode, Categories of Networks-LAN, MAN, WAN; Network Software- Protocol Hierarchies, Design issues of layers, Connection Oriented and Connectionless services; Reference Models- The OSI Reference Model, The TCP/IP Reference Model, The B-ISDN ATM Reference Model. #### UNIT-II Theoretical basis for Data communication, Transmission media- Guided and Unguided Transmission media; The Telephone System-Structure of Telephone system, Trunks and Multiplexing, Frequency Division Multiplexing, Time Division Multiplexing, Switching-Circuit Switching, The Switch Hierarchy, Crossbar switches, Space Division Switches, Time Division Switches; Narrow band ISDN, Broadband ISDN and ATM- Virtual Circuits versus Circuit Switching. UNIT-III DATA LINK LAYER PRINCIPAL DE DE SER.K.R. ENGS. COLLOS. Design issues, Error Detection and Correction, Elementary Data link protocols, Sliding window protocols, HDLC, **Medium access sub layer**-The Channel allocation problem, Multiple Access Protocols-ALOHA, Carrier Sense Multiple Access protocols; IEEE standard for 802 LANs, Satellite Networks P. Dagapall. De di # UNIT-IV NETWORK LAYER Design considerations, Difference between Gateways, Ethernet switch, Router, Hub, Repeater, Congestion Control algorithms- General principles of Congestion Control, Congestion
prevention policies. The Leaky bucket algorithm and Token bucket algorithm, The Network Layer in the Internet- The IP Protocol, IP Addresses. UNIT-V TRANSPORT LAYER The Transport layer Service, Elements of Transport protocols, The Internet Transport Protocols- UDP, TCP. #### APPLICATION LAYER The Domain Name System, Electronic mail, The World Wide Web. #### Text Books: - Data Communications and Networking by BehrouzA. Forouzan, 2nd edition, Tata McGraw Hill. - 2. Computer Networks Andrew S Tanenbaum, 3rd Edition, Pearson Education/PHI. #### Reference Books: - 1. An Engineering Approach to Computer Networks-S.Keshav, 2nd Edition, Pearson Education - 2. Understanding communications and Networks, 3rd Edition, W.A. Shay, Thomson PRINCIPAL S.R.K.R. Engg. College BHIMAVARAM-834 204. H. Jagapash de je # 3107LINEAR INTEGRATED CIRCUITS & PULSE CIRCUTS LAB WITH SIMULATION Lab : 3 Periods Exam : 3 Hrs. Int.Marks : 50 Ext. Marks : 50 Credits : 2 #### **Course Objectives:** This laboratory course enables students to get practical experience in design, assembly and evaluation of Linear integrated circuits & Pulse Circuits. They will use Multisim to test their electronic designs. #### Course Outcomes: Students will be able to: - 1. Design and conduct experiments on RC low pass and high pass circuits. - 2. Observe operation of UJT Sweep Generator. - 3. Design and test different types of Multi vibrators - 4. Acquire a basic knowledge on simple applications of operational amplifier. - 5. Design, construct Schmitt trigger using operational amplifier. - 6. Use Multisim to test their electronic designs. #### LIST OF EXPERIMENTS - 1. Linear Wave Shaping - a) Passive RC Differentiator - b) Passive RC Integrator - 2. Non Linear Wave shaping - a) Clipping Circuits - b) Clamping Circuits - 3. Self biasbistableMultivibrator - 4. Schmitt Trigger Using µA 741 - 5. UJT Sweep Generator - 6. AstableMultivibrator using 555 timer - 7. Multiplexer - 8. Shift Registers # LIST OF EXPERIMENTS (Simulation) - 1. Linear Wave Shaping - a) Passive RC Differentiator - b) Passive RC Integrator - 2. Non Linear Wave shaping PRINCIPAL DE DE DE LE PRINCIPAL COILOGO DE LE ROS COILOGO DE LE ROSA 204. - 3. Self biasbistableMultivibrator - 4. Schmitt Trigger Using μA 741 - 5. UJT Sweep Generator - 6. AstableMultivibrator using 555 timer. - 7. Multiplexer - 8. Shift Registers Reference: Lab Manuals PRINCIPAL S.R.K.R. Engg. College BHIBAYARAM-834 284. #### DIGITAL IC'S LABORATORY WITH SIMULATION Lab: 3 Periods Int.Marks: 50 Exam: 3 Hrs. Ext. Marks: 50 Credits: 2 #### **Course Objectives:** - 1. Learn and understand the basics of digital electronics, Boolean algebra, and able to design the simple logic circuits and test/verify the functionality of the logic circuits. - 2. Design combinational and sequential logic circuits using digital ICs. - 3. This laboratory course enables student to get practical experience in design, assembly and evaluation of digital integrated circuits and HDL lab. Students use digital trainer kit and Xilinx ISE simulator to test their electronic designs. #### Course Outcomes: Upon completion of the course, students will be able to - 1. Synthesize, simulate and implement a digital design in a configurable digital circuit with computer supported aid tools and digital trainer kit. - Acquire Knowledge of analysis and synthesis of combinational and sequential circuits with simulators and digital trainer kits. - 3. Build high level programming (HDL programming) skills for digital circuits. - 4. Adapt digital circuits to electronics and telecommunication field. #### LIST OF EXPERIMENTS #### A. HARDWARE - 1. Verify the operation of following digital components using Digital Trainer Kit - a. Full adder using gates - b. Full subtract or using gates - 2. Design and verify the logic functions of multiplexer and de-multiplexers using digital trainer kit - 3. Design code convertors using digital trainer kit - a. BCD TO SEVEN segment display - b. Priority encoder - 4. Verify the operation of following flip-flops using Digital Trainer Kit - a. JK flip flop - b. D flip flop - c. T flip flop - 5. Design a following synchronous counters using Digital Trainer Kit - a. Mod 16 counter - b. Mod 8 counter - c. Decade counter - 6. Verify the functioning of shift register using Digital Trainer Kit P. Magagash. De jo #### B. SOFTWARE - 7. Verify the operation of following digital components using ISE Simulator - a. Full adder - b. Full subtractor - 8. Verify the operation of multiplexer and priority encoder using ISE Simulator - 9. Design ALU and verify the operation using ISE Simulator - 10. Design RAM for read/write operations using ISE Simulator # Equipment Required: - 1. Personal Computer with necessary peripherals and Xilinx Vivado ISE software - 2. Digital trainer kits. Reference: Lab Manuals PRINCIPAL S.R.K.R. Engg. College BULMAVARAM-834 204. H. Dagapall De je - 2. Design and verify the logic functions of multiplexer and de-multiplexers using digital trainer kit - 3. Design code convertors using digital trainer kit - a. BCD TO SEVEN segment display Code: B17BS3101 #### PROBLEM SOLVING & LINGUISTIC COMPETENCE (Common to all Branches) Tutorial : 3 Periods (VA-2+QA-1) Int.Marks 30 Exam : 3 Hrs. Ext.Marks 70 Credits 1 #### Part-A: Verbal and Soft Skills-I # Course Objectives: - 1. To introduce concepts required in framing grammatically correct sentences and identifying errors while using Standard English. - 2. To familiarize the learner with high frequency words as they would be used in their professional career. - 3. To inculcate logical thinking in order to frame and use data as per the requirement. - 4. To acquaint the learner of making a coherent and cohesive sentences and paragraphs for composing a written discourse. - 5. To familiarize students with soft skills and how it influences their professional growth. #### Course Outcomes: The student will be able to - 1. Detect grammatical errors in the text/sentences and rectify them while answering their competitive/ company specific tests and frame grammatically correct sentences while writing. - 2. Answer questions on synonyms, antonyms and other vocabulary based exercises while attempting CAT, GRE, GATE and other related tests. - 3. Use their logical thinking ability and solve questions related to analogy, syllogisms and other reasoning based exercises. - 4. Choose the appropriate word/s/phrases suitable to the given context in order to make the sentence/paragraph coherent. - 5. Apply soft skills in the work place and build better personal and professional relationships making informed decisions. #### **SYLLABUS** #### Grammar: (VA) Parts of speech(with emphasis on appropriate prepositions, co-relative conjunctions, pronouns-number and person, relative pronouns), articles(nuances while using definite and indefinite articles), tenses(with emphasis on appropriate usage according to the situation), subject – verb agreement (to differentiate between number and person), clauses(use of the appropriate clause, conditional and relative clauses), phrases(use of the phrases, phrasal verbs) to-infinitives, gerunds, question tags, voice, direct & indirect speech, degrees of comparison, modifiers, determiners, identifying errors in a given sentence, correcting errors in sentences. # Vocabulary: (VA) Synonyms and synonym variants(with emphasis on high frequency words), antonyms and antonym variants(with emphasis on high frequency words), contextual meanings with regard to inflections of a word, frequently confused words, words often mis-used, multiple meanings of the same word (differentiating between meanings with the help of the given context), foreign phrases, homonyms, idioms, pictorial representation of words, word roots, Reasoning: (VA) Critical reasoning (understanding the terminology used in CR- premise, assumption, inference, conclusion), Analogies (building relationships between a pair of words and then identifying similar relationships), Sequencing of sentences (to form a coherent paragraph, to construct a meaningful and grammatically correct sentence using the jumbled text), odd man (to use logical reasoning and eliminate the unrelated word from a group), YES-NO statements (sticking to a particular line of reasoning Syllogisms. Usage: (VA) Sentence completion (with emphasis on signpost words and structure of a sentence), supplying a suitable beginning/ending/middle sentence to make the paragraph coherent, idiomatic language (with emphasis on business communication), punctuation depending on the meaning of the sentence. #### Soft Skills: Introduction to Soft Skills – Significance of Inter & Intra-Personal Communication – SWOT Analysis –Creativity & Problem Solving – Leadership & Team Work - Presentation Skills Attitude – Significance – Building a positive attitude – Goal Setting – Guidelines for Goal Setting – Social Consciousness and Social Entrepreneurship – Emotional Intelligence - Stress Management, CV Making and CV Review. # Text Books: - 1. Oxford Learners_s Grammar Finder by John Eastwood, Oxford Publication. - 2. R S Agarwal_s books on objective English and verbal reasoning - 3. English Vocabulary in Use- Advanced, Cambridge University Press. - 4. Collocations In Use, Cmbridge University Press. - 5. Soft Skills & Employability Skills by SaminaPillai and Agna Fernandez, Cambridge University Press India Pvt. Ltd. - 6. Soft Skills, by Dr. K. Alex, S. Chand & Company Ltd., New Delhi #### Reference Books: - 1. English Grammar in Use by Raymond Murphy, CUP - 2. Websites: Indiabix, 800score, official CAT, GRE and GMAT sites - 3. Material from _IMS, Career Launcher and Time_ institutes for competitive exams. - 4. The Art of Public Speaking by Dale Carnegie - 5. The Leader in You by Dale Carnegie - 6. Emotional Intelligence by Daniel Golman - 7. Stay Hungry Stay Foolish by RashmiBansal - 8. I have a Dream by RashmiBansal Pr 11. No. 3 Vocabulary: (VA) Synonyms and synonym variants(with emphasis on high
frequency words), antonyms and antonym variants(with emphasis on high frequency words), contextual meanings with regard to inflections of a word frequently confused words words often mis-used multiple meanings # Part-B: Quantitative Aptitude -I # Course objectives: The objective of introducing quantitative aptitude-1 is: - 1. To familiarize students with basic problems on numbers and ratio_s problems. - 2. To enrich the skills of solving problems on time, work, speed, distance and also measurement of units. - 3. To enable the students to work efficiently on percentage values related to shares, profit and loss problems. - 4. To inculcate logical thinking by exposing the students to reasoning related questions. - 5. To expose them to the practice of syllogisms and help them make right conclusions. #### Course Outcomes: - 1. The students will be able to perform well in calculating on number problems and various units of ratio concepts. - 2. Accurate solving problems on time and distance and units related solutions. - 3. The students will become adept in solving problems related to profit and loss, in specific, quantitative ability. - 4. The students will present themselves well in the recruitment process using analytical and logical skills which he or she developed during the course as they are very important for any person to be placed in the industry. - 5. The students will learn to apply Logical thinking to the problems of syllogisms and be able to effectively attempt competitive examinations like CAT, GRE, GATE for further studies. #### **SYLLABUS** Numbers, LCM and HCF, Chain Rule, Ratio and Proportion Importance of different types of numbers and uses of them: Divisibility tests, Finding remainders in various cases, Problems related to numbers, Methods to find LCM, Methods to find HCF, applications of LCM, HCF. Importance of chain rule, Problems on chain rule, Introducing the concept of ratio in three different methods, Problems related to Ratio and Proportion. Time and work, Time and Distance Problems on man power and time related to work, Problems on alternate days, Problems on hours of working related to clock, Problems on pipes and cistern, Problems on combination of the some or all the above, Introduction of time and distance, Problems on average speed, Problems on Relative speed, Problems on trains, Problems on boats and streams, Problems on circular tracks, Problems on polygonal tracks, Problems on races. Percentages, Profit Loss and Discount, Simple interest, Compound Interest, Partnerships, shares and dividends Problems on percentages-Understanding of cost price, selling price, marked price, discount, percentage of profit, percentage of loss, percentage of discount, Problems on cost price, selling price, marked price, discount. Introduction of simple interest, Introduction of compound interest, Relation between simple interest and compound interest, Introduction of partnership, Sleeping partner concept and problems, Problems on shares and dividends, and stocks. Introduction, number series, number analogy, classification, Letter series, ranking, directions Problems of how to find the next number in the series, Finding the missing number and related sums, Analogy, Sums related to number analogy, Ranking of alphabet, Sums related to Classification, Sums related to letter series, Relation between number series PRINCIPAL B.R.K.R. Engs and letter series, Usage of directions north, south, east, west, Problems related to directions north, south, east, west. **Data sufficiency, Syllogisms** Easy sums to understand data sufficiency, Frequent mistakes while doing data sufficiency, Syllogisms Problems. #### Text Books: - 1. Quantitative aptitude by RS Agarwal - 2. Verbal and non verbal reasoning by RS Agarwal. - 3. Puzzles to puzzle you by shakunataladevi # References: - 1. Barron_s by Sharon Welner Green and Ira K Wolf (Galgotia Publications pvt.Ltd.) - 2. Websites: m4maths, Indiabix, 800score, official CAT, GRE and GMAT sites - 3. Material from _IMS, Career Launcher and Time_ institutes for competitive exams. - 4. Books for cat by arunsharma - 5. Elementary and Higher algebra by HS Hall and SR knight. #### Websites: - 1.www.m4maths.com - 2. www.Indiabix.com - 3. www.800score.com - 4. Official GRE site - 5. Official GMAT site 29 Code: B17 BS 3102 #### BASIC CODING (Common to ECE & EEE) Lab : 3 Periods Int.Marks 50 Exam : 3 Hrs. Ext. Marks 50 Cr ed its #### **Course Objectives:** 1. To develop programming skills among the students. - 2. To familiarize the student with Control Structures, Loop Structures. - 3. To familiarize the student with Basic searching and sorting Methods. - 4. To familiarize the student with Functions, Recursions and Storage Classes. - 5. To familiarize the student with Structures and Unions. - 6. To familiarize the student with Operating System concepts. - 7. To familiarize the student with Networking concepts. #### Course Outcomes: #### At the end of the course students will be able to - 1. Know about Control Structures, Loop Structures and branching in programming. - 2. Know about various searching and sorting methods. - 3. Know about Functions, Recursions and Storage Classes. - 4. Know about Structures and Unions. - 5. Know different Operating System concepts. - 6. Differentiate OSI Model Vs. TCP/IP suite. #### **SYLLABUS** #### UNIT-I Review of Programming constructs Programming Environment, Expressions formation, Expression evaluation, Input and Output patterns, Control Structures, Sequential branching, Unconditional branching, Loop Structures, Coding for Pattern Display. #### UNIT-II Introduction to Linear Data, strings and pointers Structure of linear data, Operation logics, Matrix forms and representations, Pattern coding, Working on character data, Compiler defined methods, Substitution coding for defined methods, Row Major representation, Column Major representation, Basic searching and sorting Methods. # UNIT-III Functions, Recursions and Storage Classes Functions – Introduction to modular programming – Function Communication - Pass by value, Pass by reference – Function pointers – Recursions – Type casting – Storage classes 30 P. Dagapall Mejo Practice: programs on passing an array and catching by a pointer, function returning data, comparison between recursive and Iterative solutions. Data referencing mechanisms: Pointing to diff. data types, Referencing to Linear data, Runtime-memory allocation, Named locations vs pointed locations, Referencing a 2D-Matrix H. Dagapall de je PRINCIPAL S.R.K.R. Engg. College BHIMAVARAM-834 294. UNIT-IV User-defined datatypes, Pre-processor Directives and standard storage Need for user-defined data type – structure definition – Structure declaration – Array within a Structure – Array of Structures – Nested Structures - Unions – Declaration of Union data type, StructVs Union - Enum – Pre-processor directives , Standard storage methods, Operations on file, File handling methods, Orientation to Object oriented programming Practice: Structure padding, user-defined data storage and retrieval programs UNIT-V Operating system principles and Database concepts Introduction to Operating system principles, Process scheduling algorithms, Deadlock detection and avoidance, Memory management, Networking: Introduction to Networking, OSI Model Vs. TCP/IP suite, Datalink layer, Internet layer, DVR Vs. LSR, Transport Layer, Application Layer #### References: - Computer Science, A structured programming approach using C, B.A.Forouzan and R.F.Gilberg, 3rd Edition, Thomson, 2007. - 2. The C –Programming Language, B.W. Kernighan, Dennis M. Ritchie, Prentice Hall India Pvt.Ltd - 3. Scientific Programming: C-Language, Algorithms and Models in Science, Luciano M. Barone (Author), EnzoMarinari (Author), Giovanni Organtini, World Scientific. - 4. ObjectOrientedProgrammingin C++: N. Barkakati, PHI. - 5. ObjectOrientedProgrammingthrough C++ byRobatLaphore. - 6. https://www.geeksforgeeks.org/. - 7. https://www.tutorialspoint.com/ f. Magapall. de à PRINCIPAL S.R.K.R. Engg. College S.R.KAR. Engg. College S.R.KAR. Engg. College S.R.K.R. Engg. College S.R.K.R. Engg. College S.R.K.R. Engg. College # SCHEME OF INSTRUCTION & EXAMINATION (Regulation R17) # III/IV B.TECH (With effect from 2017-2018 Admitted Batch onwards) Under Choice Based Credit System # ELECTRONICS AND COMMUNICATION # **ENGINEERINGII-SEMESTER** | Code
No. | Name of the Subject | Cred
its | Lectur
e Hrs | Tutorial
Hrs | Lab
Hrs | Contact
Hrs/
Week | Internal
Marks | Externa
l Marks | Total
Mark
s | |----------------|---|-------------|-----------------|-----------------|------------|-------------------------|-------------------|--------------------|--------------------| | B17 EC
3201 | Microprocessors and its Applications | 3 | 3 | 1 | | 4 | 30 | 70 | 100 | | B17 EC
3202 | Microwave
Engineering | 3 | 3 | 1 | | 4 | 30 | 70 | 100 | | B17 EC
3203 | VLSI Design | 3 | 3 | 1 | | 4 | 30 | 70 | 100 | | B17 EC
3204 | Digital Signal
Processing | 3 | 3 | 1 | | 4 | 30 | 70 | 100 | | B17 EC
3205 | Radar Engineering | 3 | 3 | 1 | | 4 | 30 | 70 | 100 | | #OE | OPEN ELECTIVE | 3 | 3 | 1 | | 4 | 30 | 70 | 100 | | B17 EC
3208 | Microprocessors and
Microcontrollers Lab | 2 | | | 3 | 3 | 50 | 50 | 100 | | B17 EC
3209 | VLSI Lab | 2 | | | 3 | 3 | 50 | 50 | 100 | | B17 BS
3201 | Employability
Skills | 1 | | 3 | | 3 | 30 | 70 | 100 | | B17 BS
3203 | Advanced Coding | . 1. | | | 3 | 3 | 50 | 50 | 100 | | B17 BS
3206 | IPR & PATENTS | | | 2 | | 2 | | = | | | Total | | 24 | 18 | 11 | 9 | 38 | 360 | 640 | 1000 | | | B17EC3206 | Microcontrollers | | | | | |---------------|-----------|----------------------------|--|--|--|--| | | B17CS3214 | Oops through Java | | | | | | | B17CS3215 | Data Mining | | | | | | OPEN ELECTIVE | B17ME3210 | Industrial Robotics | | | | | | | B17EE3209 | Power Electronics | | | | | | | B17EC3207 | Bio
Medical Engineering | | | | | | | B17CS3216 | Artificial Neural Networks | | | | | M. Dagapall Olija S.R.K.R. Engg. College 33 CHIMAYARAM-634 284. #### MICROPROCESSORS AND ITS APPLICATIONS Lecture: 3 PeriodsInt. Marks: 30Tutorial: 1 PeriodExt. Marks: 70Exam: 3 Hrs.Credits3 # Course Objectives: - 1. To understand the architecture of 8085 Microprocessor - 2. To be familiar with 8085 assemble language programming - To understand the concept of interfacing peripheral devices and memory to 8085 Microprocessor - 4. To understand the architecture of 8086/8088 Microprocessor - 5. To be familiar with 8086 assemble language programming #### Course Outcomes: By the end of the course the learners (students) will - 1. Understand and analyze architecture of the 8085 microprocessor - 2. Be familiar with the 8085 Assembly Language Programming - Be familiar with Hardware and software requirements in interfacing and designing 8085 microprocessor based products for practical applications - 4. Understand and analyze architecture of the 8086 microprocessor - 5. Be familiar with the 8086 Assembly Language Programming # **SYLLABUS** #### UNIT-I: 8085 Architecture: Bus structure of 8085, internal architecture and functional description of INTEL 8085 Microprocessor pin out & signals, flag register, Fetch cycle ,memory Read /Write and I/O Read /Write Cycles with Timing Diagrams , Stack memory organization, Interrupt structure of 8085, Vectored, non-vectored, maskable and non maskable interrupts, pending interrupts, execution of SIM and RIM instructions. #### UNIT-II: 8085 Programming: Introduction to 8085 Assembly Language Programming, Programming model of 8085 and function of each register, Addressing modes of 8085 with examples, I/O addressing, Stack memory operation using PUSH and POP instructions, Classification of 8085 instructions with examples, Instruction set, Sample Programs, Subroutines, CALL and RET instructions, and Interrupt Service Routines. # UNIT-III: 8085 Interfacing: Interfacing of semiconductor Memory and I/O devices to 8085, Classification of Read /Write and Read only memories, Interfacing of SRAMs, DRAMs and EPROMs using 74LS138.Functional description of PPI(8255),PIT(8253/8254) and USART(8251A).Interfacing of parallel I/O (8255), Timer/Counter (8253/8254), Serial I/O (8251A) with 8085 Microprocessor. H. Dagapall dej PRINCIPAL B.R.K.R. Engg. College BHIMAVARAM-534 204. #### UNIT-IV: 8086/8088 Architecture: Internal Architecture and Functional description of INTEL 8086/8088 microprocessor, and their comparisons. Memory segmentation and physical memory address generation, pipeline architecture and instruction queue .Register organisation, Status flags and machine control flags of 8086, pin out and signals in detail, Memory read /write and I/O read/Write Bus cycles with timing diagrams, 8086 memory Banks,8086 minimum and maximum modes of operation. # UNIT-V: 8086 Programming: Introduction to 8086 Assembly language programming, programmable register array of 8086 and function of each register, Data addressing modes of 8086 with examples, fixed and variable I/O addressing. Stack memory operation, classification of 8086 instructions, sample 8086 assembly language programs using data transfer, Arithmetic and logic instructions, Introduction to ARM. #### Text Books: - 1. Architecture Programming and Applications. Ramesh S.Goankar.New Age International Pvt.Ltd.,(3rd Edition)' - 2. Microprocessors and interfacing ,Douglas V. Hall, Tata McGraw-Hill Revised 2nd Edition. #### Reference Book: 1. Microprocessors: The 8086/8088, 80186/80286, 80386/80486 and the Pentium Family.NileshB.Bahadure, Phi Learning Pvt.Ltd.,2010. H. Magagall. Wiji il. #### MICROWAVE ENGINEERING Lecture : 3 Periods Int. Marks 30 Tutorial : 1 Period Ext. Marks : 70 Exam : 3 Hrs. Credits #### **Course Objectives:** 1. The purpose of this course is to provide the operational characteristics and conceptual understanding of active and passive components at microwave frequencies. 2. This course also emphasizes formulation and application of scattering matrix for the analysis of different microwave passive components. 3. Further, this course also provides the understanding of measurement techniques of different parameters. # Course Outcomes: By the end of the course the learners (students) will be able to - 1. Explain the working principle of different passive waveguide components used atmicrowave frequencies. - 2. Apply the properties of scattering matrix for solving the scattering matrix of different passive microwave components for both ideal and practical considerations and analyse their operation. - 3. Understand the conceptual and operational characteristics of different microwave Tube - 4. Explain the operational characteristics of different microwave solid state devices. - 5. Understand and implement different experimental procedures involving measurement of microwave parameters #### **SYLLABUS** #### **UNIT-I: Microwave Components and its applications:** Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Coupling Mechanisms - Probe, Loop, Aperture types. Waveguide Discontinuities - Waveguide irises, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Resistive Card, Rotary Vane types; Waveguide Phase Shifters – Dielectric, Rotary Vane types, E-plane and H-plane Tees, Magic Tee, Hybrid Ring; Directional Couplers - 2Hole, Bethe Hole types, Ferrite Components-Faraday Rotation, Gyrator, Isolator, Circulator, Related Problems. #### UNIT-II: Scattering Matrix: Scattering Matrix - Significance, Formulation and Properties, Scattering Matrix of Isolator, circulator, directional coupler, E Plane Tee, H plane Tee and Magic Tee. #### UNIT-III:Qualitative treatment on Microwave Tubes: Limitations and Losses of conventional tubes at microwave frequencies.Re-entrant Cavities, Microwave tubes - O type and M type classifications. O-type tubes :2 Cavity Klystrons - Structure, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory, Applications, Reflex Klystrons – Structure, Applegate Diagram and Principle of working, Electronic Admittance; Electronic and Mechanical Tuning, Applications, Related Problems. PRINCIPAL DE DE DE S.R.K.R. ENSS. COllege S.R.K.R. ENSS. COllege BHIMAVARAM-834 294. HELIX TWTS: Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT (Qualitative treatment). M-type Tubes Introduction, Cross-field effects, Magnetrons – Different Types, 8-Cavity Cylindrical Travelling Wave Magnetron – Hull Cut-off Condition, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics. # UNIT-IV: Microwave Solid state Devices: Negative resistance phenomenon, Gunn Diode, domain formation, Tunnel Diode- principle of operation, IMPATT- principle of operation, TRAPATT, PIN Diodes and its applications (Qualitative analysis only). Detector diode or point contact diode and its characteristics. # UNIT-V:Microwave Measurements: Microwave Test bench, Measurement of Power, VSWR, Frequency, Guide Wavelength, Unknown load impedance, S parameters of reciprocal and non reciprocal devices #### Text Books: - 1. Foundations for Microwave Engineering, R. R. Collin, McGraw Hill. - 2. Microwave Devices and Circuits, Third Edition, Samuel Y. Liao, Pearson Education. #### Reference Books: - 1. Microwave Engineering, Annapurna Das, Sisir K. Das, Tata McGraw-Hill Education - 2. Microwave Engineering, 4th Edition, David M. Pozar, November 2011. - Microwave and Radar Engineering, GottapuSasibhushanaRao, Pearson Education, New Delhi, 2014. - 4. Microwave and Radar Engineering-M.Kulkarni, Umesh Publications, 3rd Edition. P. Magazall. dej. S.R.K.R. ENGS. College #### VLSI DESIGN (Common to ECE & EEE (Open Elective)) Lecture : 3 Periods Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits Int. Marks 3 : 30 # Course Objectives: Student will be introduced to - 1. Use mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnections. Learn the various fabrication steps of NMOS and CMOS. - 2. Apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect and to verify the functionality, timing, power and parasitic effects. - 3. Learn some basic electrical properties of MOSFET and scaling models and limitations of scaling of MOS circuits. - 4. The concepts and techniques of modern integrated circuit design and testing (CMOS VLSI). Learn basic concepts of FPGA. - 5. Introduction to Low power CMOS Logic circuits and also someoptimisation techniques. # Course Outcomes: By the end of the course the learners (students) will be able to - 1. Apply the Concept of design rules during the layout of a circuit. - 2. Model and simulate digital VLSI systems using hardware design language. - 3. Synthesize digital VLSI systems from register-transfer or higher level descriptions - 4. Understand current trends in semiconductor technology, and how it impacts scaling and performance. - 5. Understand the basic concepts of FPGA and low power VLSI design #### **SYLLABUS** #### **UNIT-I: Introduction:** Introduction to IC Technology, Fabrication process: NMOS, PMOS and CMOS. Ids versus V_{ds}Relationships, Aspects of MOS transistor Threshold Voltage, MOS Transconductance, Output Conductance and Figure of Merit. NMOSInverter, Pull-up to Pulldown Ratio for NMOS inverter driven by another NMOS Inverter, and through one or more pass transistors, Alternative forms of pull-up, The CMOS Invertor, Latch-up in CMOS circuits, Comparison between CMOS and Bi-CMOS technology. # UNIT-II: MOS and Bi-CMOS Circuit Design Processes: MOS Layers, Stick Diagrams, Design Rules and Layout, General observations on the Design rules, 2µm Double Metal, Double Poly, CMOS/BiCMOS rules, 1.2µm Double Metal, Double Poly CMOS rules, Layout Diagrams of NAND and NOR gates and CMOS inverter, Symbolic
Diagrams-Translation to Mask Form. #### UNIT-III: Basic Circuit Concepts: Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, The Delay Delays, Driving large capacitive loads, Propagation Delays, Wiring Capacitances, Choice of M. Dagapall. de à **Scaling of MOS Circuits:** Scaling models, Scaling factors for device parameters, Limits due to sub threshold currents, current density limits on logic levels and supply voltage due to noise and current density. Switchlogic, Gate logic. # UNIT-IV: Test and Testability: Design for Testability, Practical design for Test (OFT) Guidelines, Scan Design Techniques and Built-In-Self Test. FPGA Based Systems: Introduction, Basic concepts, FPGA architecture. # UNIT-V: Introduction to Low Power VLSI Design: Introduction to Deep submicron digital IC design, Low power CMOS Logic circuits: Over view of power consumption, Low –Power design through voltage scaling, Estimation and optimisation of switching activity, Reduction of switching capacitance, interconnect Design, Power Grid and Clock Design. ### Text Books: 1. Essentials of VLSI Circuits and Systems By Kamran Eshraghian, Douglas and A. Pucknell and SholehEshraghian, Prentice-Hall of India Private Limited, 2005 Edition. 2. CMOS Digital Integrated Circuits Analysis and Design, Sung-Mo Kang, Yusuf Leblebici, Tata McGraw Hill Education, 2003. # Reference Books: 1. -FPGA Based System Design |- Wayne Wolf, Pearson Education, 2004, Technology and Engineering. H. Magazall. de je PRINCIPAL S.R.K.R. Engg. College BHIMAVARAM-534 204. Code: B17 EC 3204 #### DIGITAL SIGNAL PROCESSING Lecture : 3 Periods Int. Marks 30 Tutorial : 1 Period Credits 2.11 Ext. Marks : 70 Exam : 3 Hrs. 3 # **Course Objectives:** This course introduces students to the fundamental principles of Digital Signal Processing and develops essential analysis and design tools required for signal processing systems & implementations. Also this subject is an introduction to the graduate-level courses in a broad range of disciplines spanning communications, speech processing & image processing. The topics include SS basics, sampling theorem, Z-transform, analysis of Discrete-time Linear Time-Invariant Systems, Realization structures, Frequency domain representation of signals and systems, DTFT, DFS, Discrete Fourier Transform (DFT), linear/circular convolutions, Fast Fourier Transform (FFT) algorithms, FIR & IIR digital filter design, Multi-rate DSP and a few DSP applications. Course Outcomes: At the end of this course, the students will be able to: - Describe the DSP fundamental theory and components, Develop an understanding of DSP advantages, limitations and fundamental tradeoffs. Carry-out LTI system analysis using convolution & Z-transform - 2. Carryout data analysis &spectrum analysis using FFT - 3. Design of IIR digital filters to meet specifications - 4. Design of FIR digital filters to meet specifications - 5. Knows multi-rate signal processing aspects & DSP applications ### **SYLLABUS** # UNIT-I: Discrete-Time Signals and Systems: (Oppenheim & Proakis) Introduction to Digital Signal Processing, Basic elements of a DSP system, Advantages of Digital SP over Analogy SP, Discrete-time signals and systems, DT-LTI systems described by Linear constant—coefficient difference equations, Properties & Analysis of DT-LTI systems, Discrete linear convolution, Frequency domain representation of DT Signals and Systems, DTFT, Review of the Z-transform, Properties, Inverse Z-transform, Analysis of DT-LTI systems in Z-Domain, System function, One-sided Z-transform, Solution of difference equations, Structures and Realization of Digital Filters, Direct-I, II, series and parallel forms. UNIT-II: Discrete Fourier Transform (DFT) and Fast Fourier Transform Algorithms (FFT): (Oppenheim & Proakis) Frequency analysis of discrete time signals, DFS, Properties of DFS, Sampling of DTFT, DFT, Properties of DFT, Circular and linear convolution of sequences using DFT, Efficient computation of DFT, Radix-2 Decimation-in-Time(DIT) & Decimation-in-Frequency(DIF) T. Jagapall. de de .R. Engg. College UNIT-III: Design of IIR Digital Filters: (Oppenheim & Proakis) General considerations in Filter design, Analog filter approximations- Butterworth and Chebyshev, Frequency response specifications; Design of IIR digital filters from analog filters, Bilinear Transformation Method, Impulse Invariance Technique, and Low-pass filter Design examples. UNIT-IV: Design of FIR Digital Filters: (Oppenheim & Proakis) Characteristics of FIR Digital Filters, Design of Linear Phase FIR digital Filters using Windows, Effect of Window selection & filter length on filter frequency response, Design examples, Comparison of IIR and FIR Filters. UNIT-V: DSP Applications and Fundamentals of Multirate Digital Signal Processing: (SK Mitra) Overview of DSP applications, Spectral analysis of sinusoidal signals using FFT, Subband coding of speech signals, Signal compression, Finite precision arithmetic effects. Introduction to Multirate DSP, Basic sampling rate alteration devices: upsampler, downsampler, Time and Frequency domain characterization of up/down samplers, Interpolator and decimator. Interactive programing based examples. ### Text Books: - 1. Alan V. Oppenheim, Ronald W. Schafer, -Digital Signal Processing | PHI Ed., 2006 - 2. John G. Proakis, D.G. Manolakis, -Digital Signal Processing: Principles, Algorithms and Applications , 3rd Ed., PHI, 1996. #### Reference Books: - 1. Sanjit K. Mitra, "Digital Signal Processing: A Computer Based Approach!, Tata McGraw - 2. Lawrence R.Rabiner, Bernard Gold, -Theory and application of digital signal processingl, Prentice Hall. S.R.K.R. Engg. College BHIMAVARAM-534 204. H. Dagagash. de je 44 Code: B17 EC 3205 ## RADAR ENGINEERING Lecture : 3 Periods Int. Marks 30 Tutorial : 1 Period Ext. Marks : 70 Exam : 3 Hrs. Credits 3 ## **Course Objectives** 1. To provide insight of basic working principle of Radar - 2. To apply different methods to measurement the Range, angle information etc. of the target from the radar, - 3. To introduce different types of Radar systems and other types of tracking Radars, - 4. To provide insight of advantages, limitations and applications of various Radar. - 5. To provide insight of basics of various navigational aids and their working principles, applications, limitations and different methods to overcome their limitations # Course Outcomes: By the end of the course the learners (students) will be able to - 1. Able to understand the basic working principles of various Radars. - 2. Apply various mathematical equations to measure the Range and angle information of the targets from the radar. - 3. Analyze and design of radar signals, MTI, Pulse Doppler radar and various tracking - 4. Analyze various Radar systems, advantages, limitations and their applications. - 5. Analyze various Navigational Aids like LORAN, DECCA and VOR. #### SYLLAB ### USUNIT-I: AN INTRODUCTION TO # RADAR: Origin of Radar, Basic Principle of Radar, Range to a target, Pulse Repetition Frequency and Range Ambiguities, Radar Block Diagram and Operation, Radar Equation, Integration of Radar Pulses , Probability of Detection and Probability of False Alarm, CW Radar and applications, Radar Antenna Parameters, System Losses and Propagation Effects, Applications of Radar. # UNIT-II: MTI AND PULSE DOPPLER RADAR: Pulse Doppler Radar, Butterfly effect, Coherent and Non Coherent Moving Target Indication Radar, Delay line Cancellers, Limitation to MTI performance, Moving target Detector, MTI from moving platform ### UNIT-III:TRACKING RADAR: Types of Tracking Radars, Sequential Lobing, Conical Scan, Monopulse tracking Radar, Low T. Jagapalle des # UNIT-IV:RADAR TRANSMITTERS&RECEIVERS: Noise Figure and Noise Temperature, Types of Duplexers, Types of Mixers, Radar Displays, Receiver Protectors, Match Filter & Antennas ## UNIT-V: FUNDAMENTALS OF NAVIGATIONAL AIDS: Principles of Direction Finders, Sense Finders, VOR, Aircraft Homing and ILS, Radio Altimeter, LORAN and NDB. ### Text Books: - Introduction to Radar Systems Merrill I. Skolnik, THIRD EDITION, Tata McGraw-Hill, 2001. - 2. Radar Systems and Radio Aids to Navigation-Prof A.K.Sen and Dr.A.B.Bhattacharya ## Reference Books: - 1. Introduction to Radar Systems Merrill I. Skolnik, SECOND EDITION, McGraw-Hill, 1981 - 2. Radar Engineering and Fundamentals of Navigational Aids, G S N Raju, IK International Publishers, 2008. - 3. Fundamentals of RADAR, SONAR and Navigation Engineering K.K.Sharma PRINCIPAL 9.R.K.R. Engg. College 9.R.K.R. AND SA 204. Code: B17EC3206 # MICROCONTROLLERS (Open Elective) Lecture : 3 Periods Int. Marks : 30 3 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits # Course Objectives: 1. To understand the basic architectures of various processors. 2. Study the architecture and addressing modes of 8051 3. Impart knowledge about assembly language programs of 8051 4. Analyze the concept of inter facing of peripheral devices and Memory. 5. Introductory programs on embedded C **Course Outcomes:** After successfully completing the course students will be able to: 1. Understand instruction execution sequence with clock. - 2. Gain comprehensive knowledge about architecture and addressing modes of 8051 - 3. Learn the art of programming in assembly language for various embedded system applications. - 4. Develop independent learning skills to interface memory and PPI with 8051 - 5. Create the IO interfacing techniques with 8051 #### **SYLLABUS** #### **UNIT-I: Introduction to 8051** Microprocessors and Microcontrollers, RISC & CISC CPU Architectures, Harvard & Von-Neumann CPU architecture. 8051Microcontroller: Introduction, Architecture of 8051, Pin diagram of 8051, Memory organization, External Memory interfacing, stacks. ## UNIT-II: Addressing modes and Instruction set: Introduction, Instruction syntax, Data types, Subroutines, Addressing modes,
Assembler directives, Instruction set, Instruction timings, example programs in assembly language. ### UNIT-III: 8051 Interrupts and Timers/counters: Basics of interrupts, 8051 interrupt structure, Timers and Counters, 8051 timers/counters, special function registers, programming 8051 timers in assembly language. ### UNIT-IV: 8051 Interfacing and Applications: Basics of I/O concepts, I/O Port Operation, Interfacing 8051 to LCD, Keyboard, parallel and serial ADC, DAC, Stepper motor interfacing and DC motor interfacing and programming. ### UNIT-V: 8051 Serial Communication: Data communication, Basics of Serial Data Communication, 8051 Serial Communication, connections to RS-232, 8255A Programmable Peripheral Interface: Architecture of 8255A, I/O devices interfacing with 8051 using 8255A, Introduction to embedded C. Jagapalle Nego ### Text Books: - -The 8051 Microcontroller and Embedded Systems using assembly and C II-, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; PHI, 2013 / Pearson, 2013 - 2. -8051 Microcontrollers I-MCS51 Family and its variants, Satish Shah, Oxford university press, 2010 ## Reference Books: - -The 8051 Microcontroller Architecture, Programming & Applicationsl, 2e Kenneth J. Ayala Penram International, 1996 / Thomson Learning 2005. - 2. -The 8051 Microcontroller , V.Udayashankar and MalikarjunaSwamy, TMH, 2009 - 3. Microcontrollers: Architecture, Programming, Interfacing and System Designl, Raj Kamal, -Pearson Education, 2005 P. Magagall. De je S.R.K.R. ENGS. COIIOGO SHIMAVARAM-834 284. Code: B17CS3214 ### OOPS THROUGH JAVA (Common to ECE & EEE)(Open Elective) Lecture : 3 Periods Int. Marks : 30 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits 3 # Course Objectives: - 1. Understanding the OOP's concepts, classes and objects, threads, files, applets, swings and - 2. This course introduces computer programming using the JAVA programming language with object- oriented programming principles. - 3. Emphasis is placed on event-driven programming methods, including creating and manipulating objects, classes, and using Java for network level programming and middleware development #### **Course Outcomes:** - 1. Understand Java programming concepts and utilize Java Graphical User Interface in Programwriting. - 2. Write, compile, execute and troubleshoot Java programming for networkingconcepts. - 3. Build Java Application for distributed environment. - 4. Design and Develop multi-tier applications. - 5. Identify and Analyze Enterpriseapplications #### **SYLLABUS** #### UNIT-I: Introduction to OOP, procedural programming language and object oriented language, principles of OOP, applications of OOP, history of java, java features, JVM, program structure. Variables, primitive data types, identifiers, literals, operators, expressions, precedence rules and associativity, primitive type conversion and casting, flow of control. #### UNIT-II: Classes and objects, class declaration, creating objects, methods, constructors and constructor overloading, garbage collector, importance of static keyword and examples, this keyword, arrays, command line arguments, nested classes. ### **UNIT-III:** Inheritance, types of inheritance, super keyword, final keyword, overriding and abstract class. Interfaces, creating the packages, using packages, importance of CLASSPATH and java.lang package. Exception handling, importance of try, catch, throw, throws and finally block, userdefined exceptions, Assertions. **UNIT-IV:** happell de je #### UNIT-V: Applet class, Applet structure, Applet life cycle, sample Applet programs. Event handling: event delegation model, sources of event, Event Listeners, adapter classes, inner classes. AWT: introduction, components and containers, Button, Label, Checkbox, Radio Buttons, List Boxes, Choice Boxes, Container class, Layouts, Menu and Scrollbar. ### **Text Books:** - 1. The complete Reference Java, 8th edition, Herbert Schildt, TMH. - 2. Programming in JAVA, SachinMalhotra, SaurabhChoudary,Oxford. - 3. Introduction to java programming, 7th edition by Y Daniel Liang, Pearson. ### Reference Books: - 1. Swing: Introduction, JFrame, JApplet, JPanel, Componets in Swings, Layout Managersin - 2. Swings, JList and JScrollPane, Split Pane, JTabbedPane, JTree, JTable, DialogBox. PRINCIPAL S.R.K.R. Engg. College BHIMAVARAM-834 204. fl. Magapall. Wir Code: B17CS3215 Int. Marks DATA MINING (Open Elective) Lecture : 3 Periods : 1 Period Ext. Marks Tutorial 70 Exam : 3 Hrs. Credits 3 : 30 # Course Objectives: 1. Students will be enabled to understand and implement classical models and algorithms in data warehousing and datamining. 2. They will learn how to analyze the data, identify the problems, and choose the relevant models and algorithms toapply. 3. They will further be able to assess the strengths and weaknesses of various methods and algorithms and to analyze theirbehavior. ## Course Outcomes: 1. Understand stages in building a Data Warehouse 2. Understand the need and importance of preprocessing techniques 3. Understand the need and importance of Similarity and dissimilarity techniques 4. Analyze and evaluate performance of algorithms for AssociationRules. 5. Analyze Classification and Clusteringalgorithms # **SYLLABUS** #### UNIT -I Introduction: Why Data Mining? What Is Data Mining?1.3 What Kinds of Data Can Be Mined?1.4 What Kinds of Patterns Can Be Mined? Which Technologies Are Used? Which Kinds of Applications Are Targeted? Major Issues in Data Mining. Data Objects and Attribute Types, Basic Statistical Descriptions of Data, Data Visualization, Measuring Data Similarity and Dissimilarity #### UNIT -II Data Pre-processing: Data Preprocessing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization #### UNIT-III Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Working of Decision Tree, building a decision tree, methods for expressing an attribute test conditions, measures for selecting the best split, Algorithm for decision treeinduction. #### UNIT -IV Classification: Alterative Techniques, Bayes' Theorem, Naïve Bayesian Classification, Bayesian Belief Networks Association Analysis: Basic Concepts and Algorithms: Problem Defecation, Frequent Item Set generation, Rule generation, compact representation of frequent item sets, FP-Growth · Dagapath. Ole ju #### UNIT-V Cluster Analysis: Basic Concepts and Algorithms: Overview: What Is Cluster Analysis? Different Types of Clustering, Different Types of Clusters; K-means: The Basic K-means Algorithm, K-means Additional Issues, Bisecting K-means, Strengths and Weaknesses; Agglomerative Hierarchical Clustering: Basic Agglomerative Hierarchical Clustering Algorithm DBSCAN: Traditional Density Center-Based Approach, DBSCAN Algorithm, Strengths and Weaknesses. (Tan & Vipin) #### **Text Books:** - 1. Introduction to Data Mining: Pang-Ning Tan & Michael Steinbach, VipinKumar, Pearson. - 2. Data Mining concepts and Techniques, 3/e, Jiawei Han, Michel Kamber, Elsevier. #### Reference Books: - 1. Data Mining Techniques and Applications: An Introduction, Hongbo Du, CengageLearning. - 2. Data Mining: VikramPudi and P. RadhaKrishna, Oxford. - 3. Data Mining and Analysis Fundamental Concepts and Algorithms; Mohammed J. Zaki, Wagner Meira, Jr, Oxford P. Magazall. Min 4. Data Warehousing Data Mining & OLAP, Alex Berson, Stephen Smith, TMH. PRINCIPAL S.R.K.R. Engg. College Code: B17ME3210 # INDUSTRIAL ROBOTICS (Common to ECE & EEE)(Open Elective) Lecture : 3 Periods Int. Marks : 30 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits 3 # Course objectives: - 1. To give students practice in applying their knowledge of mathematics, science, and Engineering and to expand this knowledge into the vast area of robotics. - 2. The students will be exposed to the concepts of robot kinematics, Dynamics, Trajectory planning. - Mathematical approach to explain how the robotic arm motion can be described. - 4. The students will understand the functioning of sensors and actuators. ### Course Outcomes: Upon successful completion of this course you should be able to: - 1. Identify various robot configuration and components, - 2. Select appropriate actuators and sensors for a robot based on specific application - 3. Carry out kinematic and dynamic analysis for simple serial kinematic chains. - 4. Perform trajectory planning for a manipulator by avoiding obstacles #### **SYLLABUS** ### UNIT-I Introduction: Automation and Robotics, CAD/CAM and Robotics - An over view of Robotics - present and future applications - classification by coordinate system and control system. ### UNIT-II Components Of The Industrial Robotics: Function line diagram representation of robot arms, common types of arms. Components, Architecture, number of degrees of freedom -Requirements and challenges of end effectors, determination of the end effectors, comparison of Electric, Hydraulic and Pneumatic types of locomotion devices. ### UNIT - III Motion Analysis: Homogeneous transformations as applicable to rotation and translation problems. Manipulator Kinematics: Specifications of matrices, D-H notation joint coordinates and world coordinates Forward and inverse kinematics - problems. M. Jagapalle de je #### **UNIT IV** General considerations in path description and generation. Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion –straight line motion – Robot programming, languages and software packages-description of paths with a robot programming language. #### UNIT V # Robot Actuators and Feed Back Components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors. Feedback components: position sensors - potentiometers, resolvers, encoders - Velocity sensors. # Robot Applications in Manufacturing: Material Transfer - Material handling, loading and unloading- Processing - spot and continuous arc welding &
spray painting - Assembly and Inspection. #### **Text Books:** - 1. Industrial Robotics / GrooverM P / Pearson Edu. - 2. Robotics and Control / Mittal R K & Nagrath J / TMH. #### Reference Books: - 1. Robotics / Fu K S/ McGrawHill. - 2. Robotic Engineering / Richard D. Klafter, PrenticeHall - 3. Robot Analysis and Control / H. Asada and J.J.E. Slotine / BSP BooksPvt.Ltd. - 4. Introduction to Robotics / John J Craig / PearsonEdu. PRINCIPAL ON A. S.R.K.R. ENGB. COILOGO S.R.K.R. ENGB. COILOGO SHIMAYARAM. SSA 204. Code: B17EE3209 # POWER ELECTRONICS (Open Elective) Lecture : 3 Periods Int. Marks : 30 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits 3 # Course Objectives: Students will - 1. Understand the concepts of Power Semiconductor devices and their applications. - 2. Understand the need of Energy conversion and effective implementation methods. ### Course outcomes: ### Students are able to - 1. Explain the principle of operation of thyristor, modern power semiconductor devices and necessity of series and parallel connection of thyristors. - 2. Explain the operation of Firing and Commutation techniques. - 3. Evaluate the phase controlled rectifiers with different loads. - 4. Analyse different Choppers, Cyclo-converter and AC voltage Controller configurations. - 5. Investigate harmonic reduction techniques for inverters based on PWM techniques. ### **SYLLABUS** ### UNIT I: MODERN POWER SEMI CONDUCTOR DEVICES Thyristors - Silicon Controlled Rectifiers (SCRs) - BJT - Power MOSFET - Power IGBT and their characteristics. Basic theory of operation of SCR - Static characteristics and Dynamic characteristics of SCR - Turn on and Turn off times - Turn on and turn off methods. Two transistor analogy of SCR -Series and parallel connections of SCRs Snubber circuit details – Numerical problems. ### UNIT ### II: ### THYRISTORFIRING AND ### COMMUTATIONCIRCUITS SCR trigger circuits-R, RC and UJT triggering circuits. The various commutation methods of SCRs-Load commutation- Resonant Pulse Commutation- Complementary Commutation-Impulse Commutation- External Pulse Commutation Techniques. Protection of SCRs # UNIT III: PHASE CONTROLLED RECTIFIERS Principles of phase controlled rectification -Study of Single phase and three-phase half controlled and full controlled bridge rectifiers with R, RL, RLE loads. Effect of source inductance. Dual converters- circulating current mode and circulating current free modecontrol strategies. Numerical problems. # UNIT IV:CHOPPERS, CYCLONVERTER AND AC VOLTAGE CONTROLLER Classification of Choppers A, B, C, D and E, Switching mode regulators-Study of Buck, ### **UNIT-V INVERTERS** Principle of operation of Single phase Inverters -Three phase bridge Inverters (180° and 120° modes)-voltage control of inverters-Single pulse width modulation- multiple pulse width modulation, sinusoidal pulse width modulation. Harmonic reduction techniues- Comparison of Voltage Source Inverters and Current source Inverters. ### Text Books: - 1. Power electronics P.S. Bimbhra- Khanna Publishers, 4th Edition - 2. Power electronics M.D. Singh & K.B. Kanchandhani, Tata McGraw Hill Publishing Company, 2nd edition. ## Reference Books: - 1. Power Electronics: Circuits Devices and Applications M.H. Rashid, Prentice Hall of India, 3rd edition. - 2. Power Electronics VedamSubramanyam, New Age International (p) Limited, Publishers. - 3. Power Electronics P.C. Sen, Tata McGraw-Hill Publishing. - 4. Thyristorised power Controllers G.K. Dubey, S.R Doradra, A. Joshi and R.M.K. Sinha, New Age international Pvt Ltd. Publishers latest edition PRINCIPAL Code: B17EC3207 ## BIO MEDICAL ENGINEERING (Open Elective) Lecture : 3 Periods Int. Marks : 30 Tutorial : 1 Period Ext. Marks 70 Exam : 3 Hrs. Credits 3 # Course Objectives: The objectives of this course are to: - 1. Describe the origin, properties and suitable models of important biological signals such as ECG and EEG. - 2. Introduce students to basic signal processing techniques in analyzing biological signals. - 3. Develop the mathematical and computational skills relevant to the field of biomedical signal processing. - 4. Develop a thorough understanding on basics of ECG signal compression algorithms. - 5. Increasethestudent's awareness of the complexity of various biological phenomena cultivate an understanding of the promises, challenges of the biomedical engineering. ## Course outcomes: At the end of the course, students will be able to: - 1. Possess the basic mathematical skills necessary to analyze ECG and EEG signals. - 2. Possess the basic scientific skills necessary to analyze ECG and EEG signals. - 3. Possess the basic computational skills necessary to analyze ECG and EEG signals. - 4. Apply classical and modern filtering and compression techniques for ECG and EEG signals. - 5. Develop a thorough understanding on basics of ECG and EEG feature extraction. ### **SYLLABUS** #### UNIT-I: Introduction to Biomedical Signals: The nature of Biomedical Signals, Examples of Objectives and difficulties in biomedical analysis, Biomedical Signals, electrocardiography, ECG lead systems, ECG signal characteristics, Simple signal conversion systems, Conversion requirements for biomedical signals, Signal conversion circuits. #### UNIT-II: Signal Averaging: Basics of signal averaging, signal averaging as a digital filter, a typical averager, software for signal averaging, limitations of signal averaging, Adaptive Principal noise canceller model, 60-Hz adaptive cancelling using a sine wave model, other applications of adaptive filtering. ### UNIT-III: Data Compression Techniques: Turning point algorithm, AZTEC algorithm, Fan algorithm, ### UNIT-IV: Cardiological signal processing: Basic Electrocardiography, ECG data acquisition, ECG lead system, ECG signal characteristics (parameters and their estimation), Analog filters, ECG amplifier, and QRS detector, Power spectrum of the ECG, Bandpass filtering techniques, Differentiation techniques, Template matching techniques, A QRS detection algorithm, Real-time ECG processing algorithm, ECG interpretation, ST segment analyzer, Portable arrhythmia monitor. ### UNIT-V: **Neurological signal processing:** The brain and its potentials, The electrophysiological origin of brain waves, The EEG signal and its characteristics (EEG rhythms, waves, and transients), Correlation, Detection of EEG rhythms, Template matching for EEG, spike and wave detection # Text Books: - 1. Biomedical Digital Signal Processing- Willis J. Tompkins, PHI 2001. - Biomedical Signal Processing Principles and Techniques- D C Reddy, McGrawHill publications 2005 ### Reference Books: 1. Biomedical Signal Analysis-Rangaraj M. Rangayyan, John Wiley & Sons 2002 PRINCIPAL S.R.K.R. Engg. College BHIMAYARAM-534 204. P. Magazall. De je Code: B17CS3216 ### ARTIFICIAL NEURAL NETWORKS (Open Elective) Lecture : 3 Periods Int. Marks : 30 Tutorial : 1 Period. Ext. Marks 70 Exam : 3 Hrs. Credits 3 # Course Objectives: - 1. To Introduce the concept of Artificial Neural Networks, Characteristics, Models of Neuron, Learning Rules, Learning Methods, Stability and Convergence - 2. To study the basics of Pattern Recognition and Feed forward Neural Networks - 3. To study the basics of Feedback neural networks and Boltzmann machine - 4. To introduce the Analysis of Feedback layer for different output functions, Pattern Clustering and Mapping networks - 5. To study the Stability, Plasticity, Neo cognitron and Different applications of Neural Networks ### **Course Outcomes** - 1. This Course introduces Artificial Neural Networks and Learning Rules and Learning methods - 2. Feed forward and Feedback Neural Networks are introduced - 3. Applications of Neural Networks in different areas are introduced. ## **SYLLABUS** ### UNIT-I: Basics of Artificial Neural Networks Introduction: Biological Neural Networks, Characteristics of Neural Networks, Models of Neuron, Topology, Basic Learning Rules Activation and Synaptic Dynamics: Activation Dynamic Models, Synaptic Dynamic Models, Learning Methods, Stability & Convergence, Recall in Neural Networks UNIT-II: Functional Units of ANN for Pattern Recognition Tasks: Pattern Recognition problem Basic Fundamental Units, Pattern Recognition Tasks by the Functional Units Feed forward Neural Networks: Analysis of Pattern Association Networks, Analysis of Pattern Classification Networks, Analysis of Pattern Mapping Networks #### UNIT-III: Feedback Neural Networks: Analysis of linear auto adaptive feed forward networks, Analysis of pattern storage Networks, Stochastic Networks & Stimulated Annealing, Boltzmann machine #### UNIT-IV: Competitive Learning Neural Networks: Components of a Competitive Learning Network, Analysis of Feedback layer for Different Output Functions, Analysis of Pattern Clustering . Dagapall. de de ### **UNIT-V:** Applications of Neural Networks: Pattern classification, Associative memories, Optimization, Applications in Image Processing, Applications in decisionmaking ### **Text Book:** 1. B. Yagnanarayana-Artificial Neural Networks II, PHI #### Reference Books: - 1. LaureneFausett,—Fundamentals of Neural Networksl, PearsonEducation - 2. Simon Haykin, -Neural Networksl, SecondEdition PRINCIPAL S.R.K.R. Engg. College PHIMAVARAM-534 204. f. nagagash de à Code: B17 EC # 3208MICROPROCESSORS AND MICROCONTROLLERS LAB Lab : 3 Periods Int.Marks : 50 Exam: 3 Hrs. Ext. Marks : 50 Credits : 2 ## **Course Objectives:** 1. To understand the basics of Microprocessors 8085 - 2. To understand the basics of Microprocessors 8086 and Microcontroller 8051. - 3. To understand the internal organization of INTEL 8085, - 4. To understand the internal organization of INTEL 8085,8086 Microprocessors and Microcontroller 8051. - 5. Developing Assembly Language Programs using the instruction sets of microprocessors and microcontroller and to study the interfacing of the processor with various peripheral devices. ### Course Outcomes: The objective of this course is - 1. To become
familiar with the instruction set of Intel microprocessors and microcontroller. - 2. To familiarize with Assembly language programming. - 3. The accompanying lab is designed to provide practical hands-on experience with microprocessor software applications and interfacing techniques. ## **SYLLABUS** ### Experiments Based On ALP (8085): - 1. Assume that byte of data is stored at memory location _X'. Write an ALP which tests bit 5 of thisdata. Write _FF' in the location _X+1' if the bit 5 is _1' and _00'if bit 5 is 0°. - b. Check the zero condition of this number and write _00' at location_Y' if it is _0'and _FF' at _Y' if non zero. - c. For data value in the location X' compute the number of logic 1's and store the result in the location _Y+1'. - 2. a. Write an ALP to swap the contents of location _X' and _X+1' using BC & HL Register pairs. - b. By using above logic, write an ALP to transfer a block of data into another block. - a. Write an ALP to add and subtract two eight bit Number stored in the location _X' 3. and _X+1' by assuming that content of _X' is greater than content of _X+1' - Modify this program to add two 16 bit numbers without using DAD instruction. - Two 8 bit numbers 34H and 43H are stored in locations _X' and _X+1' compute the 4. product of these two numbers using - Repetitive addition method b. Shift and add method - The number of the bytes of a block of data is in location _X' and data starts from 5. location _X+1' onwards defining a stack pointers. Write an ALP to arrange this sequence of data in reverse order. Keep the reverse sequence from Y' onwards. - The number of bytes of a block of data is location _X' and data starts from location 6. _X+1'onwards. Arrange this block of data in ascending order by using bubble sorting technique - 7. Using 8279 write an ALP to generate the message of 4 characters. Activate the LED's individually and make the display ON &OFF for every 0.5 seconds # Experiments Based On ALP (8086): - 1. Write an 8086 ALP to addition of two-32 bit numbers stored in the memory location 6000H and 6004H. Store the result at location 6008H. - 2. Write an 8086 ALP to Subtraction of two-32 bit numbers stored in the memory location 6000H and 6004H. Store the result at location 6008H. - 3. Write an 8086 ALP to Multiply two 16 bit numbers stored in the memory location 9000H and 9002H. Store the result at location 9005H. - 4. Write an 8086 ALP to divide 32bit dividend with 16 bit devisor stored in the memory location 5000H and 5004H respectively. Store the quotient at 5006H and the remainder in location 5008H. - Write an 8086 program to add four digit BCD numbers present in memory locations 15000 H and 15002 H.Store the result at memory location 15004 H. - 6. Write an 8086 program to sort the given block of data using bubble sorting technique. Assume number bytes of block of data stored in the memory location 3000H and Actual block of data starts from 3001H onwards. Experiments based on Interfacing and Microcontroller (8051): Programs on Data transfer instructions using 8051 Microcontroller Programs on Arithmetic and Logical instructions using 8051 Microcontroller References: 1. Lab Manual 69 H. Dagapall dig Code: B17EC3209 ### **VLSI LAB** Lab : 3 Periods Int. Marks 50 Exam: 3 Hrs. Ext. Marks : 50 Cr ed its 2 # **Course Objectives:** Learn and understand the basics of NMOS and CMOS logic and able to design the schematic diagrams of basic combinational and sequential circuits using CMOS logic with necessary EDA tools (Mentor Graphics/Cadence Tools) Draw the layout diagrams of combinational and sequential to perform the following experiments using CMOS 130nm Technology with necessary EDA tools (Mentor Graphics/Cadence Tools) 3. This laboratory course enables student to get practical experience in design and evaluation of performance metrics. Course Outcomes: Upon completion of the course, students will be able to - 5. Learn the work flow of mentor graphic tools/Cadence tools forlogic gates, Combinational and Sequential circuits. - 6. Simulate combinational and sequential circuits with EDA tools - Acquire Knowledge of analysis of combinational and sequential circuits using CMOS 130nm Technology. - 8. Acquire practical experience in drawing layouts using Cadence/Mentor Graphics CAD tools. ## List of Experiments: - 1. Design and implementation of an inverter - 2. Design and implementation of universal gates (NAND, NOR) - 3. Design and implementation of AND, OR gates - 4. Design and implementation of EXOR gate using minimum no. of transistors - 5. Design and implementation of 2 to 1 Multiplexer - 6. Design and implementation of full adder - 7. Design and implementation of full subtractor - 8. Design and implementation of D-latch - 9. Design and implementation 3-bit asynchronous counter - 10. Design and Implementation of static 1-bit RAM cell # **Equipment Required:** - 1. Mentor Graphics/Cadence tools software-latest version - 2. Personal computer with necessary peripherals. #### References: P. Dagarall. Min. | EMPLOYABILITY S (Common to all Bra Theory : 3 Periods (VA-2+0) | nches) | |--|--------| | Int.Marks | 30 | | Exam : 3 Hrs. | | | Ext.Marks | 70 | | | Cr | | | ed | | | ite 1 | # Part-A: Verbal Aptitude and Soft Skills-II # Course objectives: - 1. To expose the students to bettering sentence expressions and also forming equivalents. - 2. To instill reading and analyzing techniques for better comprehension of written discourses. - 3. To create awareness among the students on the various aspects of writing, organizing data, preparing reports, and applying their writing skills in their professional career. - 4. To inculcate conversational skills, nuances required when interacting in different situations. - 5. To build/refine the professional qualities/skills necessary for a productive career and to instill confidence through attitude building. ### Course Outcomes: The students will be able to - 1. Construct coherent, cohesive and unambiguous verbal expressions in both oral and written discourses. - 2. Analyze the given data/text and find out the correct responses to the questions asked based on the reading exercises; identify relationships or patterns within groups of words or sentences - 3. Write paragraphs on a particular topic, essays (issues and arguments), e mails, summaries of group discussions, reports, make notes, statement of purpose(for admission into foreign universities), letters of recommendation(for professional and educational purposes). - 4. Converse with ease during interactive sessions/seminars in their classrooms, compete in literary activities like elocution, debates etc., raise doubts in class, participate in JAM sessions/versant tests with confidence and convey oral information in a professional manner. - 5. Participate in group discussions/group activities, exhibit team spirit, use language effectively according to the situation, respond to their interviewer/employer with a positive mind, tailor make answers to the questions asked during their technical/personal interviews, exhibit skills required for the different kinds of interviews (stress, technical, HR) that they would face during the course of their recruitment process. ## **SYLLABUS** ### UNIT -I (VA) Sentence Improvement (finding a substitute given under the sentence as alternatives), Sentence equivalence (completing a sentence by choosing two words either of which will fit in the blank), cloze test (reading the written discourse carefully and choosing the correct options from the alternatives and filling in the blanks), summarizing and paraphrasing. UNIT-II (VA) P. Magazall. Dej Types of passages (to understand the nature of the passage), types of questions (with emphasis on inferential and analytical questions), style and tone (to comprehend the author_s intention of writing a passage), strategies for quick reading(importance given to skimming, scanning), summarizing ,reading between the lines, reading beyond the lines, techniques for answering questions related to vocabulary (with emphasis on the context), supplying suitable titles to the passage, identifying the theme and central idea of the given passages. f. Dagagall. De je PRINCIPAL S.R.K.R. ENSS: 534 294. # UNIT-III (VA) Punctuation, discourse markers, general Essay writing, writing Issues and Arguments(with emphasis on creativity and analysis of a topic), paragraph writing, preparing reports, framing a _Statement of purpose_, _Letters of Recommendation_, business letter writing, email writing, writing letters of complaints/responses. picture perception and description, book review. # UNIT-IV (VA) Just a minute sessions, reading news clippings in the class, extempore speech, telephone etiquette, making requests/suggestions/complaints, elocutions, debates, describing incidents and developing positive non verbal communication, story narration, product description. # UNIT-V (SS) Employability Skills – Significance — Transition from education to workplace - Preparing a road map for employment – Getting ready for the selection process, Awareness about Industry / Companies – Importance of researching your prospective workplace - Knowing about Selection process - Resume Preparation: Common resume blunders – tips, Resume Review, Group Discussion: Essential guidelines – Personal Interview: Reasons for Rejection and Selection. # Reading/ Listening material: - 1. Guide to IELTS, Cambridge University Press - 2. Barron_s GRE guide. - 3. Newspapers like _The Hindu, _Times of India, _Economic Times. - 4. Magazines like Frontline, Outlook and Business India. - 5. News channels NDTV, National News, CNN #### Text Books: - 1. Objective English and Verbal Reasoning by R S Agarwal. - 2. Communication Skills by Sanjay Kumar and PushpaLatha, Second Edition, OUP. - 3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication by R C Sharma and Krishna Mohan. -
4. Soft Skills & Employability Skills by SaminaPillai and Agna Fernandez, Cambridge University Press India Pvt. Ltd. - 5. Soft Skills, by Dr. K. Alex, S. Chand & Company Ltd., New Delhi ### Reference Books: - 1. Oxford Guide to Effective Writing and Speaking by John Seely. - 2. Collins Cobuild English Grammar by Collins - 3. The Art of Public Speaking by Dale Carnegie - 4. The Leader in You by Dale Carnegie - 5. Emotional Intelligence by Daniel Golman - 6. Stay Hungry Stay Foolish by RashmiBansal P. Dagagade. Ne di # Part-B: Quantitative Aptitude-II ## Course objectives: The objective of introducing quantitative aptitude-II is: - 1. To refine concepts related to quantitative aptitude. SOLVING PROBLEMS OF DI and accurate values using averages, percentages. - 2. To inculcate logical thinking by exposing the students to puzzles and reasoning related questions. - 3. To familiarize the students with finding out accurate date and time related problems. - 4. To enable the students solve the puzzles using logical thinking. - 5. To expose the students to various problems based on geometry and mensuration. #### Course Outcomes: - 1. The students will be able to perform well in calculating different types of data interpretation problems. - 2. The students will perform efficaciously on analytical and logical problems using various methods. - 3. Students will find the angle measurements of clock problems with the knowledge of calendars and clock. - 4. The students will skillfully solve the puzzle problems like arrangement of different positions. - 5. The students will become good at solving the problems of lines, triangulars, volume of cone, cylinder and so on. ### **SYLLABUS** **UNIT I: Averages, mixtures and allegations, Data interpretation** Understanding of AM,GM,HM-Problems on averages, Problems on mixtures standard method. Importance of data interpretation: Problems of data interpretation using line graphs, Problems of data interpretation using bar graphs, Problems of data interpretation using pie charts, Problems of data interpretation using others. UNIT II: Puzzle test, blood Relations, permutations, Combinations and probability Importance of puzzle test, Various Blood relations-Notation to relations and sex making of family Tree diagram, Problems related to blood relations, Concept of permutation and combination, Problems on permutation, Problems on combinations, Problems involving both permutations and combinations, Concept of probability-Problems on coins, Problems on dice, Problems on cards, Problems on years. UNIT III: Periods, Clocks, Calendars, Cubes and cuboids Deriving the formula to find the angle between hands for the given time, finding the time if the angle is known, Faulty clocks, History of calendar-Define year, leap year, Finding the day for the given date, Formula and method to find the day for the given date in easy way, Cuts to cubes, Colors to cubes, Cuts to cuboids, Colors to cuboids. **UNIT IV: Puzzles** Selective puzzles from previous year placement papers, sitting arrangement, problems- circular arrangement, linear arrangement, different puzzles. **UNIT V:** Geometry and Mensuration Introduction and use of geometry-Lines, Line segments, Types of angles, Intersecting lines, Parallel lines, Complementary angles, supplementary angles, Types of triangles-Problems on triangles, Types of quadrilaterals-Problems on quadrilaterals, Congruent triangles and properties, Similar triangles and its applications, Understanding about circles-Theorems on circles, Problems on circles, Tangents and circles, Importance of mensuration-Introduction of cylinder, cone, sphere, hemi sphere. PRINCIPAL DE JA PRINCIPAL S.R.K.R. ENGS. College S.R.K.R. ENGS. 634 204. ### Text Books: - 1. Quantitative aptitude by RS Agarwal - 2. Verbal and non verbal reasoning by RS Agarwal. - 3. Puzzles to puzzle you by shakunataladevi - 4. More puzzles by shakunataladevi - 5. Puzzles by George summers. ### Reference Books: - 1. Barron_s by Sharon Welner Green and Ira K Wolf (Galgotia Publications pvt.Ltd.) - 2. Websites: m4maths, Indiabix, 800score, official CAT, GRE and GMAT sites - 3. Material from _IMS, Career Launcher and Time_ institutes for competitive exams. - 4. Books for cat by arunsharma - 5. Elementary and Higher algebra by HS Hall and SR knight. P. Dagagall. No ju Code: B17 BS 3203 ## ADVANCED CODING (Common to ECE & EEE) Lab : 3 Periods Int.Marks 50 Exam : 3 Hrs. Ext. Marks 50 Cr ed its ## **Course Objectives** - 1. To understand the basics of modular programming - 2. To learn about ADT, Linked Lists and Templates. - 3. To investigate different methods to find time complexities. - 4. To learn about Java collections and Libraries ### Course Outcomes At the end of the course, a student should be able to: - 1. Acquire coding knowledge on essential of modular programming - 2. Acquire Programming knowledge on linked lists - 3. Acquire coding knowledge on ADT - 4. Acquire knowledge on time complexities of different methods - 5. Acquire Programming skill on Java libraries and Collections ### **SYLLABUS** ### UNIT I Review Coding essentials and modular programming Introduction to Linear Data, Structure of linear data, Operation logics, Matrix forms and representations, Pattern coding. Introduction to modular programming: Formation of methods, Methods: Signature and definition, Inter-method communication, Data casting & storage classes, Recursions #### UNIT II Linear Linked Data Introduction to structure pointer, Creating Links Basic problems on Linked lists, Classical problems on linked lists. Circular Linked lists, Operations on CLL, Multiple links, Operations on Doubly linked lists ### UNIT III Abstract Data-structures Stack data-structure, Operations on stack, Infix/Prefix/Post fix expression evaluations, Implementation of stack using array, Implementation of stack using linked lists. Queue data-structure: Operations on Queues, Formation of a circular queue, Implementation of queue using stack, Implementation of stack using array, Implementation of stack using linked lists UNIT IV Running time analysis of code and organization of PRINCIPAL S.R.K.R. ENGS. 204. UNIT V Standard Library templates and Java collections Introduction to C++ language features, Working on STLs, Introduction to Java as Object Oriented language, Essential Java Packages, Coding logics. Note: This course should focus on Problems #### References: - 1. Computer Science, A structured programming approach using C, B.A.Forouzan and R.F.Gilberg, 3rd Edition, Thomson, 2007. - 2. The C Programming Language, B.W. Kernighan, Dennis M. Ritchie, Prentice Hall India Pvt.Ltd - 3. Scientific Programming: C-Language, Algorithms and Models in Science, Luciano M. Barone (Author), EnzoMarinari (Author), Giovanni Organtini, World Scientific. - 4. ObjectOrientedProgrammingin C++: N. Barkakati, PHI. - 5. ObjectOrientedProgrammingthrough C++ byRobatLaphore. - 6. https://www.geeksforgeeks.org/. - 7. https://www.tutorialspoint.com/ PRINCIPAL S.R.K.R. ENGS. College SHIMAVARAM-534 204. Code: B17BS3206 ### **IPR & PATENTS** (Common to CSE, ECE & IT) **Tutorial** : 2 Periods Credits 0 ## Course Objectives: - 1. To introduce the idea of tangible and intangible property and its protection. - 2. To familiarize with the frameworks for protection of intellectual property. - 3. To layout the procedures to claim rights over intellectual property. ### Course Outcomes: After successful completion of the course, the student shall be able to - Identify various types of intangible property that an engineering professional could generate in the course of his career. - 2. Distinguish between various types of protection granted to Intellectual Property such as Patents, Copy Rights, Trademarks etc., - 3. List the steps involved in getting protection over various types of intellectual property and maintaining them. - 4. Take precautions in writing scientific and technical reports without plagiarism. - 5. Help micro, small and medium entrepreneurs in protecting their IP and respecting others IP as part of their business processes. #### **SYLLABUS** #### UNIT I Intellectual Property Law: Basics - Types of Intellectual Property - Innovations and Inventions - Trade related Intellectual Property Rights - Agencies Responsible for Intellectual Property Registration - Infringement - Compliance and Liability Issues #### **UNIT II** Principles of Copyright – Subject Matters of Copyright – Rights Afforded by Copyright Law –Copyright Ownership–Copyright Formalities and Registration – Limitations – Infringement of Copyright - Plagiarism and difference between Copyright infringement and Plagiarism #### UNIT III Introduction to Trade Mark – Trade Mark Registration Process – Post registration procedures – Trade Mark maintenance – Infringement – Dilution of Ownership of Trade Mark – Likelihood of confusion – Trade Mark claims – Trade Marks Litigation – International Trade Mark Law M. Dagapall. de je S.R.K.R. Engg. College BHIMAVARAM-534 204. ### **UNIT IV** Introduction to Patent Law - Rights and Limitations - Rights under Patent Law - Patent Requirements - Ownership and Transfer - Patent Application Process and Granting of Patent - Patent Infringement and Litigation - International Patent Law - Double Patenting # UNIT V Introduction to Trade Secrets – Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreement – Trade Secret Law – Unfair Competition – Trade Secret Litigation – Breach of Contract – Applying State Law. # Text Books: - KompalBansal&ParikshitBansal "Fundamentals of Intellectual Property for Engineers", BS Publications - 2. PrabhuddhaGanguli: "Intellectual Property Rightsl Tata McGraw -Hill, New Delhi - 3. R. Radha Krishnan, S. Balasubramanian: "Intellectual Property Rights: Text and Cases", Excel Books, New Delhi. #### Reference Books: - 1. Deborah E.Bouchoux: -Intellectual Propertyll. Cengage learning, NewDelhi - 2. Richard Stim: "Intellectual Property",
Cengage Learning, New Delhi. PRINCIPAL COILOGO