INTERFERENCE AND DIFFRACTION

1) Wave nature of light is evidenced by

A) photoelectric effect	B) interference	C) black body radiat	ion D) none			
2) When a soap bubble is illuminated with white light, multiple colors appear. This is due to						
A) diffraction	3) polarization C) t	otal internal reflection	D) interference			
3) Two light sources are said to be coherent waves if their light waves have						
A) same frequency	 constant phase differer 	nce C) same waveleng	th D) all the above			
4) Newton's rings experiment is an example for						
A) division of amplitude	e B) division of wavefrom	t C) both A and B	D) none			
5) In Newton's rings experiment, the condition for dark fringes in case of reflected light is						
A) $2t=n\lambda$ B)	$2t=(2n-1)\frac{\lambda}{2}$	C) $2t = (2n-1)\lambda$	D) none			
6) The penetration of waves into the regions of the geometrical shadow is						
A) interference	3) diffraction	C) polarization	D) dispersion			
7) In Fraunhofer diffraction, the wavefront undergoing diffraction has to be						
A) spherical E	3) cylindrical	C) elliptical	D) plane			
8) A diffraction grating has						
A) large number of equidistant slits B) large number of random distant slits						
C) only one slit	D) r	none				
9) In diffraction grating, the condition for principal maxima is						
A) $(a+d)\sin\theta=n\lambda$	B) $d\sin\theta = n\lambda$	C) $\sin\theta = n\lambda$	D) $a\sin\theta = n\lambda$			
10) Resolving power of grating is (<i>N</i> is the total number of lines on the grating)						
A) directly proportional to N B) inversely proportional to N C) independent of N D) none						

11) The expression for resolving power of a grating is

A)
$$\frac{n}{N}$$
 B) nN **C)** n^2N **D)** none

12) The ability of an instrument to separate the two distant point objects very close to each other is called as its

A) resolving power B) dispersive power C) magnifying power D) interference

13) The expression for resolving power of a telescope is

A)
$$\frac{\lambda}{1.22 d}$$
 B) $\frac{d}{1.22 \lambda}$ C) $\frac{d}{1.22 d\lambda}$ D) $\frac{1.22 \lambda}{d}$

14) The resolving power of the microscope becomes higher when

A) limit of resolution is large B) limit of resolution is small C) limit of resolution is 0 D) none

15) The wave front gives

A) Surface of the wave
B) Locus of all the points having the same displacement
C) Locus of all the points having the same phase
D) geometry of the wave
16) If 1000 is the resolving power of a grating in its first order, its resolving power in second order is given by

A) 500 B) 1000 C) 2000 D) None of these

17) The expression for fringe width of wedge shaped film β is

A)
$$\beta = \frac{\lambda}{\theta}$$
 B) $\beta = \frac{2\lambda}{\theta}$ C) $\beta = \lambda 2\theta$ D) $\beta = \frac{\lambda}{2\theta}$

18) In Newton's rings experiment, the diameter of dark ring is proportional to (n = natural number)

A) \sqrt{n} B) n C) $\sqrt{(2n-1)}$ D) none 19) The class of diffraction in which lenses are required is

A) Fresnel B) Fraunhofer C) both A and B D) none

20) The expression for intensity of light in Fraunhofer diffraction at single slit is

A)
$$I_{\theta} = I_m \left[\frac{\sin \alpha}{\alpha} \right]$$
 B) $I_{\theta} = I_m^2 \left[\frac{\sin \beta}{\beta} \right]$ C) $I_{\theta} = I_m \left[\frac{\sin \beta}{\beta} \right]^2$ D) none

21) Maximum number of orders possible with a grating is

A) directly proportional to wavelength B) directly proportional to grating element

C) independent of grating element		D) inve	D) inversely proportional to grating element		
22) A grating has 5 o	cm of surface, ruled w	rith 6000 lines/cm.	What is the r	esolving power of	
grating in the first or	der?				
A) 1200	B) 12000	C) 30000	D) 300	00	
23) Wave theory wa	s postulated by				
A) Newton	B) Huygens	C) Foca	ault	D) Maxwell	
24) The wave front (gives				
A) Surface of the wa	ave B) L	ocus of all the poi	nts having the	e same displacement	
C) Locus of all the p) Locus of all the points having the same phase D) geometry of the wave				
25) The intensity of	the light wave is giver	ו by			
A) its electric vector		B) the square of	square of its electric vector		
C) the magnetic vec	tor	D) the Poynting	e Poynting vector		
26) Phase change	occurs				
	progresses from one				
B) When it undergo	es reflection in a rare	r medium against	denser mediu	ım	
C) When it undergo	es reflection in a dens	er medium agains	st a denser me	edium	
D) When a wave en	counters another wav	е.			
27) The width of the	single slit is halved ir	Erouphofor diffro	ction. The fire	t minimum	
-	-				
A) moves away from the center of the screenC) moves to the center of the screen		2	B) moves towards the centre of the screen.D) remains as the same position		
C) moves to the center of the screen D) remains as the same position.					
28) Diffraction was o	discovered by				
A) Newton	B) Huygens	C) Grim	naldi	D) Fresnel	
29) Which of the foll	owing is conserved w	hen light waves in	iterfere ?		
A) Intensity	B) Energy	C) Amp	litude	D) None	
30) What is the ratio of phase difference to the path difference between two light waves					
Α) 2πλ	B) $\frac{2\pi}{\lambda}$	С	$\frac{\lambda}{2\pi}$	D) $\frac{1}{2 \pi \lambda}$	
31) To observe inter	ference in thin films w	ith light of wavele	ngth λ , the	e thickness of the film t	

A) $t \approx 100 \lambda$	B) $t \approx 1000 \lambda$	C) t≈λ	D) no relation			
32) Two waves having the intensities in the ratio of 9 : 1 produce interference. The ratio of maximum to minimum intensity is equal to						
A) 10 : 8	B) 9 : 1	C) 4 : 1	D) 2 : 1			
33) During the interfe	erence of light, energy is					
A) created at maxim	a B) destroyed at minima	C) not conserved	D) redistributed			
34) A thin film is observed in white light. The color of the film seen at a particular point depends upon the						
-	B) distance of source C owing is essential for observi	-	D) none of the above			
A) a narrow slit36) Diffraction patter	B) two coherent sources n cannot be observed with	C) a screen	D) white light			
 A) two narrow slits B) large number of narrow slits C) one narrow slit D) one wide slit 37) Which property of light is confirmed by diffraction ? 						
,	transverse wave nature		ture D) quantum nature			
-	liffraction, the first diffraction					
$\theta = 30^{\circ}$ for a light	of 5000 A ⁰ wavelength. The	width of the slit is				
A) $5 \times 10^{-5} cm$	B) $10 \times 10^{-5} cm$	C) $2.5 \times 10^{-5} cm$	D)			
$1.255 \times 10^{-5} cm$						
39) Blue light has been used to obtain the diffraction pattern of a narrow slit on a screen.						
Keeping the experimental set up unchanged, if blue light is replaced by red light, the diffraction						
pattern will be						
A) wider	B) narrower	C) unchanged	D) disappear			
40) When white light is incident on a diffraction grating, the light that will be deviated most from						
the central image will be						
A) yellow	B) violet	C) indigo	D) red			
ANSWERS						

1) B 2) D 3) D 4) A 5) A 6) B 7) D 8) A 9) A 10) A 11) B 12) A 13) B