[B19CEOE01]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

III B. Tech II Semester (R19) Regular Examinations

DISASTER MANAGEMENT

(Open Elective: offered by CE) (offered to : CSE, ECE, EEE, IT & ME)

MODEL QUESTIONPAPER

TIME: 3Hrs. Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks

		All questions carry equal marks			
			CO	KL	M
		UNIT – I			
1.	a.	Explain Disaster management cycle and five priorities for action	1	K2	15
		OR			
2.	a.	Differentiate Natural and manmade disasters with suitable examples.	1	K2	15
	1	UNIT – II			
3.	a.	Explain in detail about the impact of disaster on economic growth of a nation.	1	K2	15
	•	OR			
4.	a.	Explain in detail about the impact of disasters on agricultural and live hood	1	K2	15
		UNIT – III		•	
5.	a.	Explain in detail about the structural and non-structural measures to be followed in	2	K2	15
		risk reduction.			
		OR			
6.	a.	Explain in detail about the risk reduction strategies	2	K2	15
		UNIT – IV			
7.	a.	Explain the Guiding Principles for Disaster Risk Management.	3	K2	15
	1	OR			
8.	a.	Explain in detail about the community based disaster management and social	3	K2	15
		capital.			
		UNIT – V			
9.	a.	Explain in detail about the role of technology in disaster preparedness and	3	K2	15
		planning			
		OR			
10.	a.	Explain about the role of Indigenous Knowledge in Natural Resource	3	K2	15
		Management.			

[B19CEOE01] SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS

(Open Elective: offered by CE) (Offered to: CSE, ECE, EEE, IT & ME) MODEL QUESTIONPAPER

TIME: 3Hrs. Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks

	UNIT-I	M	CO	KL
1.a)	Define Remote Sensing. Illustrate the basic components of Remote Sensing.	7	1	K2
b)	Explain electromagnetic radiation interaction with atmosphere.	8	1	K2
	OR			
2. a)	What are the advantages and disadvantages of various Remote Sensing platforms.	7	1	K2
b)	What is Sensor? Write a note on classification of Sensors.	8	1	K2
	UNIT-II			
3.a)	Evaluate the elements of visual interpretation in image analysis.	7	2	K2
b)	Compare supervised and unsupervised classification.	8	2	K2
	OR			
4. a)	Evaluate the digital image processing techniques.	7	2	K2
b)	Explain in detail about the concept of resolution, discuss in brief about spatial and radiometric resolutions.	8	2	K2
	UNIT-III			
5.a)	Expand GIS. Describe the key components of GIS in detail with a neat sketch.	7	3	K2
b)	Distinguish the raster data models and vector data models.	8	3	K2
	OR			
6. a)	Explain the role of Map Projections in GIS.	7	3	K2
b)	Briefly explain the application areas of GIS.	8	3	K2
	UNIT-IV			
7. a)	Demonstrate the role of Remote Sensing in forest studies.	7	4	K2
b)	Explain the significance of Remote Sensing and GIS in Urban Planning.	8	4	K2
	OR			
8. a)	Explain the function of Remote Sensing in Geological studies.	7	4	K2
b)	Demonstrate the role of Remote Sensing in Land Use Land Cover studies.	8	4	K2
2)	UNIT-V		<u> </u>	
9.a)	Explain the role of Remote Sensing for Watershed Management.	7	4	K2 K2
b)	Illustrate the role of RS & GIS in Flood zoning and its mapping. OR	ð	4	K.Z
10. a)	Elucidate the role of GIS for Environmental Impact Assessment.	7	4	K2
b)	GIS for Ground Water prospects mapping - Explain.	8	4	K2

[B19CSOE01] SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

III B. Tech II Semester (R19) Regular Examinations

DATA STRUCTURES

(Open Elective: offered by CSE) (Offered to: CE, ECE, EEE & ME) MODEL QUESTIONPAPER

TIME: 3Hrs. Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks

			CO	KL	M
		UNIT - I			
1.	a).	Distinguish between linear and binary search technique.	CO1	K4	7
	b).	Discuss the running time of Divide-and-Conquer Merge sort	CO1	K2	8
		algorithm with example.			
		OR	.		
2.		m with example? Write a recursive a algorithm	C01	K4	7
	b).	Write an algorithm for Quick sort and also analyze the time	CO1	K2	8
		complexity.			
		UNIT - II			
3.	a).	Explain about queue operations with example	CO2	K2	7
	b).	Explain representation of Queues using Linked List.	CO2	K2	8
		OR	ı	ı	
4.	a).	Define stack. Explain different operations performed on stack.	CO2	K2	7
	b).	Convert the prefix expression * + A B – C D into infix expression and	CO2	K2	8
		then draw the corresponding expression tree.			
		UNIT - III			
5.	a).	What is meant by linked list and doubly linked lit? Write an	CO3	K2	8
		algorithm to insert and delete elements in a doubly linked list.			
	b).	Explain Sparse Matrix Representation using Linked List.	CO3	K4	7
		OR			
6.	a).	Write procedure for Circular Linked list deletion operations	CO3	K2	7
	b).	Write an algorithm to demonstrate a polynomial using a linked list	CO3	К3	8
		for Addition, Subtraction and Multiplication operations.			
		UNIT - IV			
7.	a).	Trace the construction of BST for the following data:	CO4	К3	8
		14,7,10,20,31,3,5,25,12.			
	b).	What are the various traversal methods available for traversing a	CO4	K2	7
		binary tree?			
		OR			
8.	a).	The inorder and preorder sequence of nodes of a binary tree are	CO4	К3	8
		CGADFBE and BCAGFDE respectively. Construct the binary tree and			l
		find its post order sequence of nodes.			
	b).	Explain a procedure to add node to a Binary tree and deleting a node	CO4	K4	7
		from a Binary tree.			
		UNIT - V	•		
9.	a).	Illustrate Kruskal's algorithm to find the minimum spanning tree of a	CO5	К3	8
		graph.			<u> </u>

		A 5 E 7 10 2 B 3 C 4 D			
	b).	Explain different ways representation of graphs.	CO5	K4	7
	•	OR		•	
10.	a).	Differentiate depth-first search and breadth-first search traversal of a graph with suitable examples.	CO5	K2	8
	b).	Illustrate Prim's algorithm to find the minimum spanning tree of a graph.	CO5	К3	7

[B19CSOE02]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

JAVA PROGRAMMING

(Open Elective: offered by CSE) (Offered to: CE, ECE, EEE & ME) MODEL QUESTIONPAPER

TIME: 3Hrs. Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks

			M	CO	KL
		UNIT-I			
1	a.	Explain about the Features of Java.	7	1	2
	b.	Illustrate about Method Overloading with an example.	8	1	2
	-	OR	1	l	1
2	a.		8	1	2
	b.	Extend with an example about this keyword.	7	1	2
		UNIT-II			
3	a.	Explain the differences between Arrays and Vectors.	7	2	2
	b.	Write a Java Program to implement methods of Vector class.	8	2	3
		OR	1	l	
4	a.	Compare the differences between String class and StringBuffer class.	7	2	2
	b.	Develop a Java Program to implement various methods of String class.	8	2	3
		UNIT-III	1		
5	a.	List different types of inheritances in Java.	8	3	1
	b.	Demonstrate with example about Method Overriding.	7	3	2
	-	OR		l	
6	a.	Distinguish abstract class and interface.	7	3	4
	b.	Summarize about procedure for creating packages with an example.	8	3	2
		UNIT-IV	1		
7	a.	Explain about the mechanism of Exception handling in Java.	7	4	2
	b.	Develop a Java Program to create Custom Exception.	8	4	3
		OR	1		
8	a.	Explain about the life cycle of thread.	7	4	2
	b.	Explain about the various methods of creating Thread.	8	4	2
	1	1	1	I	

		UNIT-V			
9	a.	Discuss about Byte Oriented IO and Character Oriented IO.	7	5	2
	b.	Develop a Java program to copy contents of one file to another file using Line Oriented IO.	8	5	3
		OR			
10	a.	Discuss the types of JDBC Drivers.	8	5	2
	b.	Construct a JDBC program to retrieve data from the database.	7	5	3

[B19CSOE03]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

WEB TECHNOLOGIES

(Open Elective: offered by CSE) (Offered to: CE, ECE, EEE & ME) MODEL QUESTIONPAPER

TIME: 3Hrs.

Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks

			CO	KL	M
		UNIT - I			
1.	a).	Explain the concept of frameset and frames in building Web Pages	CO1	K2	7
	b).	Explain various form elements with an example	CO1	K2	8
		OR			
2.	a).	Explain different types of lists in HTML with an example	CO1	K2	7
	b).	Write an HTML script to manage personal details of a student like name,	CO1	K2	8
		class, qualifications, photo, address etc., using tables and other suitable tags.			
		UNIT - II			
3.	a).	Explain various types of Style sheets with example	CO1	K2	7
	b).	Write a java script to print Armstrong Numbers between 1 to 500.	CO1	К2	8
	•	OR		•	
4.	a).	Explain different java script objects.	CO2	K2	7
	b).	Explain various types of selectors in CSS with suitable examples	CO2	K2	8
		UNIT - III		'	
5.	a).	Explain about Ajax Mechanism with an Example	CO3	K2	7
	b).	Explain the differences between DOM & SAX	CO3	K2	8
	•	OR	-		
6.	a).	Explain about XML schema with an example	CO3	K2	8
	b).	Explain about integration of Ajax and PHP with an example	CO3	K2	7
		UNIT - IV			
7.	a).	Explain about the types of Arrays in PHP with an example.	CO4	K2	7
	b).	Explain any 5 String Operations in PHP with Suitable Examples	CO4	К2	8
	'	OR	•		•
8.	a).	Explain various types of control statements in PHP	CO4	K2	8
	b).	Write a PHP Script to find the Fibonacci sequence upto a given number	CO4	К2	7
		UNIT - V			
9.	a).	Explain how a Session is created and Destroyed in PHP	CO5	K2	7
	b).	Develop a PHP program to fetch data from the MYSQL database.	CO5	КЗ	8
		OR			
10.	a).	Develop a PHP Program to Insert data into a MYSQL database	CO5	КЗ	8
	b).	Explain about Cookies in PHP with an example.	CO5	K2	7

[B19ECOE01]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

BASIC ELECTRONICS

(Open Elective: offered by ECE) (Offered to: CE, CSE, EEE , IT & ME) MODEL QUESTIONPAPER

TIME: 3Hrs.

Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks

			CO	KL	M
		UNIT-I			
1.	a).	Explain basic operation and V-I characteristics of semiconductor diode?	1	K2	7
	b).	What is Zener diode? Explain its operation in reverse bias condition	1	K2	8
		along with its applications?			
		OR			
2.	a).	Give a brief note on the breakdown mechanism of a diode.	1	K2	7
	b).	Explain construction and operation of LED?	1	K2	8
		UNIT-II			
3.	a).	Draw and explain the operation of a full wave rectifier.	1	K3	8
	b).	Prove that the rectifier efficiency of a full wave rectifier is twice that of	1	K3	7
		the half wave rectifier.			
		OR			
4.	a).	Derive the expression for efficiency and ripple factor for a half wave	1	K3	8
		rectifier with capacitive filter.			
	b).	Mention the advantages and applications of rectifier circuits.	1	K2	7
		UNIT-III			
5.	a).	Plot the input and output characteristics of transistor in CE	2	K2	8
		configuration?			
	b).	Explain different modes of operation of a BJT.	2	K2	7
		OR			
6.	a).	Explain Common-base configuration of transistor?	2	K2	8
	b).	Explain the operation of transistor as an amplifier.	2	K2	7
		UNIT-IV			
7.	a).	Explain the operation of a BJT in self bias.	3	K2	8
	b).	Explain the working principle of CE amplifier with neat diagram.	3	K2	7
8.	a).	Write a short note on transistor hybrid model	3	K2	7
	b).	Explain the working principle of CC amplifier with neat sketch.	3	K2	8
		UNIT-V			
9.	a).	Explain the construction and working of a n-channel JFET.	4	K2	7
	b).	Write a short note on FET biasing.	4	K2	8
		OR			
10.	a).	List out the advantages of FET over BJT.	4	K2	7
· 	b).	Write a brief note on the characteristics of a Junction FET.	4	K2	8

[B19ECOE02] SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

III B. Tech II Semester (R19) Regular Examinations

SIGNALS & SYTEMS

(Open Elective: offered by ECE) (Offered to: CE, CSE, EEE, IT & ME) MODEL QUESTIONPAPER

TIME: 3Hrs.

Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks *****

			M	CO	KL
		UNIT-I	'	•	
1	a.	Explain all classification of signals with examples for each category.	7	1	3
	b.	Determine the power and RMS value of the following signals.	8	1	3
		1. $x(t) = 5\cos(50t+3)$,			
		$2. x (t) = 10\cos(5t)\cos(10t)$			
		OR		•	
2	a.	Prove the energy of the power signal is infinite over infinite time.	7	1	3
	b.	Find weather the below signals are periodic or not, if periodic find periodicity	8	1	2
		also.			
		1. $(-1)^n$ 2. Cos 3t $u(t)$			
		UNIT-II		•	
3	a.	Determine whether the following systems are time invariant or not.	7	2	2
		$1. y(t) = x(t^2)$			
		2.y(n) = x(2n)			
	b.	Find the convolution of the following two discrete time sequences $x(n) = \{1,$	8	2	2
		$2, 5, 4$ and $y(n) = \{6, 2, 4, 3\}.$			
		OR			
4	a.	Find the convolution of the following two signals. $X(t) = u(t)$ and $y(t) =$	7	2	3
		$e^{-at}u(t)$.			
	b.	Explain all classification of systems with examples for each category.	8	2	3
		UNIT-III			
5	a.	State and derive time shifting and time scaling Properties of Fourier	7	3	3
		Transform.			
	b.	Find the Fourier transform of the following	8	3	3
		$1.e^{at}u(-t)$			
		$2. te^{-at}u(t)$			
	•	OR		•	
6	a.	Find the inverse Fourier transform of $X(jw) = 1/(1+jw)^2$	7	3	3
	b.	State and prove the differentiation in the frequency domain property of CTFT	8	3	3
	•	UNIT-IV			
7	a.	Find the Laplace Transform of $x(t) = te^{-at}u(t)$	7	4	3
	b.	State and prove any two properties of the Laplace Transform.	8	4	3

		OR			
8	a.	Compute the initial and final values for $x(s) = \frac{2s+5}{s(s+3)(s+4)^2}$	7	4	3
	b.	Find the inverse Laplace Transform of $X(S) = log\left(\frac{S+5}{S+6}\right)$	8	4	3
		UNIT-V		•	
9	a.	List out the properties of ROC of Z – Transform.	7	5	3
	b.	Find the Z – Transform of the signal $\left(\frac{1}{2}\right)^{(n-1)}u(n-1)$.	8	5	3
		OR			
10	a.	Find the inverse Z – Transform of $\frac{1-aZ^{-1}}{Z^{-1}-a}$ with ROC $ Z > \left \frac{1}{a}\right $	7	5	3
	b.	State the Nyquist sampling theorem and discuss about under sampling, critical	7	5	3
		sampling and over sampling conditions.			

[B19EEOE01] SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

INTRODUCTION TO ELECTRICAL SYSTEMS

(Open Elective: offered by EEE) (Offered to: CE, CSE, ECE, IT & ME) MODEL QUESTIONPAPER

TIME: 3Hrs.

Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks *****

			CO	KL	M
		UNIT-I			
1	a.	What are non-renewable and renewable sources of energy? sketch the layout of hydel power plant	1	3	8
	b.	Define the Electrical quantities i) Voltage ii) Current iii) Power iv) Energy? write the relation between power and Energy	1	3	7
		OR			
2	a.	Explain with neat sketch thermal power plant?	1	3	8
	b.	Explain principle of operation electrical generator and derive emf equation in single loop generator?	1	3	7
		UNIT-II			
3	a.	Explain in brief about Transmission and Distribution system	2	3	8
	b.	Explain various components of substation with the help of schematic diagram	2	3	7
	1	OR	1		
4	a.	What is the principle operation of single-phase transformer and mention main applications of transformers?	2	3	7
	b.	Explain in brief about Indian power grid	2	3	8
	1	UNIT-III			
5	a.	Explain the principle of operation of 3 phase induction motor.	3	3	8
	b.	Explain the laws of Illumination.	3	3	7
		OR			
6	a.	Derive the torque equation in dc motor and write down the application of dc motors	3	3	7
	b.	Explain the construction and principle of operation fluorescent lamp.	3	3	8
	1	UNIT-IV	1		
7	a.	What is rectifier? Explain operation of single-phase diode rectifier with neat sketch?	4	3	7

	b.	Explain lead acid battery cell and Li ion battery cell operation and explain	4	3	8
		importance of Li ion battery			
		OR			
8	a.	Explain single phase bridge inverter operation and draw waveforms and write	4	3	8
		its distortion factor and THD			
	b.	Define DoD, C-rate, capacity, SoC, Energy density, SoH of a battery?	4	3	7
		Compare these parameter values of Li ion batteries and lead battery			
		UNIT-V			
9	a.	Explain briefly about the methods of artificial respiration for the person	5	3	8
		affected by electrical shock?			
		Explain the construction details and working principle of plate earthing with a	5	3	7
		neat sketch?			
		OR			
10	a.	Explain the construction details and operation of a miniature circuit breaker	5	3	7
		(MCB)?			
	b.	Explain in detail about the different types of electrical hazards?	5	3	8
		-			

[B19EEOE02]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

ELECTRICAL ESTIMATION AND COSTING

(Open Elective: offered by EEE) (Offered to: CE, CSE, ECE, IT & ME) MODEL QUESTIONPAPER

TIME: 3Hrs.

Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks *****

			M	CO	KL
		UNIT-I			
1	a.	Discuss in detail about Electrical diagrams.	7	1	3
	b.	Discuss in detail about Methods of representation of wiring diagrams.	8	1	3
		OR			<u>.L</u>
2	a.	Explain the concept of system of connection of electrical appliances and accessories.	7	1	3
	b.	With the help of schematic and wiring diagram explain a simple fan and light circuit.	8	1	3
		UNIT-II			
3	a.	With the help of neat sketch, Explain about three phase four wire distributed system.	7	2	4
	b.	Discuss in detail about the guidelines for the installation of fittings	8	2	4
		OR	1 -		
4	a.	Discuss about various protections of electrical systems.	7	2	4
	b.	Explain in detail about the location of switches and outlets.	8	2	4
	•	UNIT-III			•
5	a.	What are the factors to be considered for electrical installation of residential building? Explain.	7	3	3
	b.	Discuss in detail about the estimation of material for the electrical installation of commercial building.	8	3	3
	•	OR	'		
6	a.	How electrical installation is done for commercial buildings? Explain.	7	3	3
	b.	Discuss in detail about the electrical installation of small industries.	8	3	3
		UNIT-IV	•		
7	a.	Discuss in detail about various types of substations.	7	4	3
	b.	With the help of neat sketch, discuss about floor mounted type substations.	8	4	3
		OR			
8	a.	What is an outdoor substation? What are its features?	7	4	3
	b.	What are the advantages and disadvantages of pole mounted type substations? Explain.	8	4	3
		UNIT-V			
9	a.	Explain in detail about Estimation and cost for 1000 Meter 400/230 Volt overhead	15	5	4
		transmission line with street lightning.			
		OR	1 -		Τ.
10	a.	Explain in detail about the type of support required for overhead distribution lines.	8	5	4
	b.	Discuss in detail about the mechanical design of overhead lines.	7	5	3

[B19ITOE01]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

DATA STRUCTURES & ALGORITHMS

(Open Elective: offered by IT) (Offered to: CE, ECE, EEE & ME) MODEL QUESTIONPAPER

TIME: 3Hrs.

Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks

			CO	KL	M
	-	UNIT-I	1	<u> </u>	
1	a)	Define data structure. Discuss different types of data structure their implementations applications.	CO1	K2	7
	b)	Explain the recursive merge sort algorithm to sort the following elements: 12, 25, 5, 9, 1, 84, 63, 7, 15, 4, 3.	CO2	K2	8
		OR			
2	a)	Write Recursive Binary Search algorithm. Search element 12 in the given list using Recursive Binary Search algorithm 2, 5, 12, 15, 23, 28, 36, 39, 45	CO2	K2	7
	b)	Rearrange following numbers using quick sort: 10, 6, 3, 7, 17, 26, 56, 32, 72	CO2	К3	8
		UNIT-II			
3	a)	Explain the procedure to evaluate postfix expression. Evaluate the following postfix expression 7 3 4 + - 2 4 5 / + * 6 / 7 +	CO3	K2	7
	b)	Discuss the algorithms for push and pop operations on a stack	CO3	K2	8
		OR			
4	a)	Give the structure of Queue ADT. Explain the operations in it.	CO3	K2	7
	b)	Convert the given infix expression A+B^C+(D*E/F)*G into its postfix expression, and evaluate the same using stack. Here A=3, B=5, C=2, D=7, E=4, F=1, G=8.	СОЗ	K3	8
		UNIT-III			
5	a)	Write an algorithm for representing the polynomial $6x^6 + 4x^3 - 2x + 10$ using linked lists.	CO3	К3	7
	b)	Write an algorithm to insert new node at the beginning, at middle position and at the end of a singly linked list.	CO3	К3	8
		OR			
6	a)	Write an algorithm to push and pop an element from linked stack	CO3	K3	7
	b)	Write an algorithm to delete an element anywhere from doubly linked list.	CO3	К3	8
		UNIT-IV			
7	a)	Explain Heap sort algorithm. Create Heap for the following elements and then sort them. (13, 102, 405, 136, 15, 105, 390, 432, 28, 444)	CO4	К3	7
	b)	Develop a binary search tree resulting after inserting the following integer keys 49, 27, 12, 11, 33, 77, 26, 56, 23, 6. (i) Check whether the tree is almost complete or not? (ii) Determine the height of the tree (iii) Write post order and pre-order traversals	CO4	К3	8
		OR			
8	a)	How to represent binary tree using arrays and linked list?	CO4	K2	7
	b)	Construct an AVL tree by inserting the following elements successively C O M P U T E R	CO4	K2	8
	0)	C O WI P O I E R	204	182	

		UNIT-V								
9	a suitable example.									
	b)	What is minimum cost spanning Tree? Explain the process of finding the minimum spanning tree with suitable example.	CO3	K2	8					
		OR								
10	a)	CO3	K2	7						
	b)	CO3	K2	8						

[B19ITOE02]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

DATABASE DESIGN & DEVELOPMENTMODEL

(Open Elective: offered by IT) (Offered to: CE, ECE, EEE & ME) MODEL QUESTIONPAPER

TIME: 3Hrs. Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks

			CO	KL	M
		UNIT - I			
1	a).	Explain the advantages of DBMS.	CO1	K2	7M
1.	b).	Briefly explain about various database users and functions of DBA.	CO1	K2	8M
		OR			
	a).	Draw the architecture of Database Management System and explain the	CO1	K2	8M
2.		function of each component.			
	b).	Explain 2-tier and 3-tier application architectures.	CO1	K2	7M
		UNIT - II			
3.	a).	Explain the concept of a weak entity set with an example.	CO2	K3	7M
	b).	Explain all integrity constraints with an example for each.	CO2	K2	8M
		OR			
	a).	Consider a binary relationship of your choice with many-to-one cardinality and total participation. Translate the complete E-R diagram	CO2	K3	8M
		into a collection of tables.	002	IXJ	0111
	b).	A university database contains information about Professors (identified by			
4.	′	empid) and Courses (identified by cid). Professors teach courses; each of the			
		following situations describes the Teaches relationship. For each situation draw	CO2	K3	7M
		an ER diagram that describes it. i) Every professor must teach some course. ii)	002	IXJ	/ 1 1 1
		Every professor teaches exactly one course. iii) Every professor teaches exactly			
		one course and every course must be taught by some professor.			
		UNIT - III	GOA	17.0	53.6
	a).	Explain the steps in the evaluation of basic SQL Query with an example.	CO3	K2	5M
5.	b).	Consider the following schema and answer the following queries in SQL. Students(sid: string, sname:string, Date_of_Birth:date, GPA:real) Courses(cid:string, cname:string, credits:integer, offered_by:string) Enrolled(sid:string, cid:string) i)For each course offered by CSE department, find the total number of enrollments. ii) Find the sum of credits of all courses taken by student "S01".	CO3	K3	10M
		iii) Find the courses that have at least 10 enrollments.			
		iv) Find the IDs of courses enrolled by youngest students.			
		OR			
	a).	Consider the following schema and answer the following queries in SQL.			
		Students(sid: string, sname:string, Date_of_Birth:date, GPA:real)			
		Courses(cid:string, cname:string, credits:integer, offered_by:string) Enrolled(sid:string, cid:string) i)Find the ids of students who had taken both	CO3	K3	8M
6.		the courses C01 and C02. ii) Write a correlated query to find the list of courses	003	KJ	OIVI
		that are not taken by any student. iii)Find the departments that offer at least 5			
		courses.			

		UNIT – IV			
7.	a).	Consider the schema $R(A,B,C,D,E)$ and the list of functional dependencies $F=\{A\rightarrow BC, EC\rightarrow D,D\rightarrow A\}$. Determine candidate keys of R.	CO4	КЗ	7M
/•	b).	Explain 3 rd Normal Form and Boyce-Codd Normal Form with suitable examples.	CO4	К3	8M
		OR			
	a).	Explain multi valued dependency and 4th normal form.	CO4	K2	7M
8.	b).	Consider R(A,B,C,D,E) and the list of functional dependencies $F=\{A\rightarrow BC, EC\rightarrow D,D\rightarrow A\}$. What is the best normal form that R satisfies? Decompose R into a collection of 3NF relations.	CO4	K3	8M
		UNIT - V			
9.	a).	Explain ACID properties of a transaction.	CO5	K2	7M
9.	b).	Explain the three phases of ARIES recovery algorithm.	CO5	K2	8M
		OR			
10.	a).	Explain Locks, their compatibility and 2-Phase locking protocol to achieve concurrency control.	CO5	K2	7M
	b).	Explain 2 policies of deadlock prevention.	CO5	K2	8M

[B19ITOE03]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

III B. Tech II Semester (R19) Regular Examinations

JAVA PROGRAMMING

(Open Elective: offered by IT) (Offered to: CE, ECE, EEE & ME) MODEL QUESTIONPAPER

TIME: 3Hrs.

Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks ****

			CO	KL	M
		UNIT - I			
	a).	Illustrate the concept of JVM with a Diagram.	CO1	K3	7M
1.	b).	Illustrate the differences between C, C++ and Java with a neat diagram	CO1	К3	8M
		OR		-	ı
2.	a).	Illustrate the structure of a java program	CO1	К3	7M
	b).	Explain about Java buzz words	CO1	K2	8M
		UNIT - II		-	
3.	a).	Write a java program to perform constructor overloading with an example	CO2	K2	7M
	b).	Explain class Declaration syntax in java and modifiers	CO2	K2	8M
		OR			
4.	a).	Write a java program to perform method overloading.	CO2	K2	7M
4.	b).	Explain the keyword final how it is used in java	CO2	K2	8M
		UNIT - III			
	a).	Explain polymorphism and its types. Construct a java program which	CO3	K3	7M
5.		Illustrates the functionality of method overloading and method overriding.			
	b).	Write how Multiple Inheritance is possible in java with an example program.	CO3	K3	8M
	•	OR		1	
6.	a).	Demonstrate an array? Write a java program to read an array of n elements and print them.	CO3	К3	7M
	b).	Write a java program to find second largest number in an array.	CO3	K3	8M
		UNIT – IV	-		
	a).	Interpret the concept of packages in java.	CO4	K2	7M
7.	b).	Construct a java program that shows the functionality of creating a	CO4	K2	8M
		public class in an already existing user defined package.			
		OR			
8.	a).	Write a java program to create custom exception.	CO4	K3	7M
	b).	Illustrate 2 different ways of creating a thread in java with code.	CO4	K3	8M
		UNIT - V	007	174	
0	a).	Explain any 4 layout mangers in java with example code.	CO5	K2	7M
9.	b).	Write a java swing code to create a frame and add any five different components onto the frame.	CO5	K3	8M
		OR			I

	a).	Write a java program to explain event handling.	CO5	K2	7M	
10.	b).	Explain JDBC Architecture and procedure to establish JDBC	CO5	K2	8M	I
		Database Connections.				

[B19MEOE01]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

OPERATIONS RESEARCH

(Open Elective: offered by ME)

(Offered to: CE,CSE, ECE, EEE & IT) MODEL QUESTIONPAPER

TIME: 3Hrs.

Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks ****

								CO	KL	M
			UNIT-	I						
1.	Suppose an industry is man per Kg of the two products require processing in three available machine hours per one Kg of P1 and P2. Form model and solve it by Grapl	are Rs.30 e types of r day and the nulate the	and R mach the time proble	ts.40 re lines. T e requi	spective The followed on one	ely. These tw lowing table each machine	o products shows the to produce	1	К3	15
	Profit/Kg	P1		-	22	THE RESIDENCE THE SERVICES	ble Machine			
	Machine 1	Rs.30			5.40		rs/day 00			
	Machine 2	3 3			<u>2</u> 5		00			
	Machine 3	5			6		00			
			OR				<u> </u>			
2.	Find the solution of the following $z = 3x_1 + 2x_2 + 2$	·	D:					1	К3	15
	subject to $x_1 + x_2 + 2x_3$ $2x_1 + x_2 + x_3$ with $x_1 \ge 0, x_2 \ge 0$	≥ 24								
		Ţ	JNIT-	II					172	1.5
3.	Solve the following transpo		blem.					2	K3	15
	Destination -	\mathbf{D}_1	D_2	D_3	D_4	Supply				
	O_1	5	3	6	2	19				
	O_2	4	7	9	1	37				
	O ₃	3	4	7	5	34				
	Demand	16	18	31	25	90				
			OR							
4.	Consider the problem of ass are given as follows. Determ						nent costs	2	K3	15

					1.0000000000000000000000000000000000000							
				Jo	b							
			1	2	3	4	5					
		A	8	4	2	6	1					
	Person	В	0	9	5	5	4					
		C	3	8	9	2	6					
		D	4	3	1	0	3					
		E	9	5	8	9	5					
				,	UNIT-II	n r						
5.	Find the seque	ence that	minim				ired in 1	performi	ng the	3	K3	15
	following jobs											
	given in the fo	ollowing t	able:									
		Job	i	: 1	2	3	4	5				
		Machin	ne A	: 8	10	6	7	11				
		Machin	ne B	: 5	6	2	3	4				
		Machin	ne C	: 4	9	8	6	5				
					OR							
	pays \$28 for each of the battery and clerical conditions. Determ order of b. Determ c. How n	each batter's value. Osts). The mine the equantity. The many order in the equantity order in the equantity.	ery and It cos suppli orderin economers will orderin	ts appresent appresent the current of the current o	ates that eximate ently ord ling and r quanti- ced per y ng, and	the and by \$20 lers 100 total in total	nual hole to place batterion nventor (2). ng the I wentory	ding costs an order of the costs for	for the current r the EOQ?			
					UNIT-I	V						
7.	Solve the follo	owing 6x2	2 game			-				4	K3	15
					1 -3 5 -1 6 4 1 2 2 -5 0							
					OR							
8.	A dental surg	ery has t	wo op	eration	rooms.	The ser	rvice tii	mes are	assumed to be	4	K3	

	independent, expon	entially	dis	stribu	ted	with	me	an 1	5 m	inutes	s. And	lrew a	arrives			
	when both operation	-														
					•											
	is still under medical treatment. Another 20 minutes later Caroline arrives and bo Andrew and Bob are still under treatment. No other patient arrives during this 3															
	minute interval.							I				8				
	a. What is the p	robabil	itv t	hat A	ndre	ew w	ill be	e re	adv b	efore	Bob?					
	1		•						•			ew?				
	b. What is the probability that Caroline will be ready before Andrew?c. What is the probability that Caroline will be ready before Bob?															
	c. What is the probability that Caroline will be ready before Bob?															
					TINI	IT-V	,									_
9.	The following are the	time est	imat					ce r	alation	nchine	of the	activit	iec in a	5	I/2	15
9.	The following are the time estimates and the precedence relationships of the activities in project network:									ics iii a	3	K3	15			
	Activity	A	В	С	D	Е	F	G	Н	I	J	K]			
	Predecessor											***	1			
	activity	-	-	-	A	В	В	C	E	D	F,G	H,I				
	Time estimate	4	7	3	6	4	7	6	10	3	4	2				
	(weeks)	7	/	3	U	7	/	U	10	3	-					
	Duam 41	1:		D	4	. .	.1		-14	.1. 41	:	.4	1.4:			
	Draw the project net time, Total float, Free							rilic	aı paı	n, the	e projec	ct com	pietion			
	time, Total Hoat, Tree	iloat ai	.10 11.	idepe)R										
10.	The time estimates (in	weeks)	and	other			istics	of	nroie	ect are	e given	helow		5	К3	15
10.									7-8	3	IXJ	13				
	Optimistic time	3		2	+	6	4		8	3	3	2	8			
	Most likely time	6		5		12	5		11	7	9	4	16			
	Pessimistic time	9		8		18	6		14	11	15	6	18			
	Determine (i) Critical path (ii) Expected to complete the project and also prepare activity															
	schedule.	F ()	,			 P		r	5 - 5		P1	-r				

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

[B19MEOE02]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

OPERATIONS MANAGEMENT

(Open Elective: offered by ME) (Offered to: CE,CSE, ECE, EEE & IT) MODEL QUESTIONPAPER

TIME: 3Hrs. Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks ****

			CO	KL	M
		UNIT-I			
1.	a).	Define Operations Management. Explain in brief the functions of	CO1	KL3	8
		operations management.			
	b).	What is forecasting? State the benefits and costs associated with	CO1	KL3	7
		forecasting.			
		OR			
2.	a).	Define productivity. Explain the factors affecting productivity.	CO1	KL3	8
	b).	State the classification of production system. Explain any one production	CO1	KL3	7
		system with example.			
		UNIT-II	600	171.0	
3.	a).	List the various factors influencing plant location.	CO2	KL3	8
	b).	Differentiate between rural and urban sites	CO2	KL3	7
4		OR	CO2	IZI 2	0
4.	a).	Sketch and explain any two types of plant layouts.	CO2	KL3	8
	b).	What is facility layout? What factors determines the type of layout used in an organisation.	CO2	KL3	7
		UNIT-III			
5.	a).	What do you mean by inventory? What are the types of inventory?	CO3	KL3	8
3.	b).	Explain in detail about ABC analysis using an example.	CO3	KL3	7
	<i>D</i>)•	OR	000	TELLO	
6.	a).	Define MRP. What are the main inputs and outputs of MRP?	CO3	KL3	8
	b).	State the benefits and limitation of MRP	CO3	KL3	7
		UNIT-IV			
7.	a).	List the common strategies used in aggregate planning. Explain in	CO3	KL3	8
	,	detail about any two.			
	b).	What is aggregate planning? What are the objectives of aggregate	CO3	KL3	7
		planning?			
		OR			
8.	a).	What are the functions of master process for scheduling	CO3	KL3	8
	b).	Explain in detail about any two standard scheduling methods.	CO3	KL3	7
		UNIT-V			
9.	a).	Discuss the need for inventory.	CO4	KL3	8
	b).	Derive the equation for Economic Order Quantity.	CO4	KL3	7
		OR			
10.	a).	What is ERP? Write the benefits and imitations of ERP	CO4	KL3	8
	b).	Write the importance of purchasing and supply chain management.	CO4	KL3	7

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

[B19MEOE03]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

III B. Tech II Semester (R19) Regular Examinations TOTAL QUALITY MANAGEMENT

(Open Elective: offered by ME) (Offered to: CE,CSE, ECE, EEE & IT) MODEL QUESTIONPAPER

TIME: 3Hrs. Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks ****

			CO	KL	M
		UNIT-I			
1.	a).	What is the role of process and product control on quality?	CO1	KL3	8
	b).	List and discuss about Variable control charts.	CO1	KL3	7
		OR			
2.	a).	What is acceptance sampling? What are its advantages and disadvantages?	CO1	KL3	8
	b).	Write the benefits of TQM.	CO1	KL3	7
		UNIT-II			
3.	a).	Discuss in detail about internal customers and external customers.	CO2	KL3	8
	b).	Discuss about buyer-supplier relationships towards building quality.	CO2	KL3	7
		OR			
4.	a).	Define bench marking and explain the process of bench marking.	CO2	KL3	8
	b).	Writ the limitation of bench marking.	CO2	KL3	7
		UNIT-III			
5.	a).	Describe the transition from traditional to TQM approach.	CO3	KL3	8
	b).	Explain briefly what is meant by quality circle.	CO3	KL3	7
		OR			
6.	a).	Write a note on Systems approach to TQM.	CO3	KL3	8
	b).	Explain how do you measure productivity.	CO3	KL3	7
		UNIT-IV			
7.	a).	What are different quality costs and explain how do you measure?	CO3	KL3	7
	b).	Explain up to what extent accounting system contribute in building quality?	CO3	KL3	8
		OR			
8.	a).	What is the importance of analyzing quality cost information?	CO3	KL3	8
	b).	What is the need for separate quality accounting system?	CO3	KL3	7
		UNIT-V			
9.	a).	Discuss in detail standards of ISO9000 series.	CO4	KL3	8
	b).	Write the objectives of ISO 9000?	CO4	KL3	7
		OR			
10.	a).	How do you document services associated with ISO9000 series?	CO4	KL3	8
	b).	What are the issues and benefits in ISO9000 certification?	CO4	KL3	7
	~ ~				

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

[B19BSOE01]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

III B. Tech II Semester (R19) Regular Examinations COMPUTATIONAL STATISTICS WITH R

(Open Elective: offered by EM&H)

(Offered to: CE,CSE, ECE, EEE, IT & ME)

MODEL QUESTIONPAPER TIME: 3Hrs.

Answer ONE Question from EACH UNIT All questions carry equal marks ****

Max. Marks: 75M

Q.No.			Questio	ns		CO	KL	M
			Unit-1					
1.a)				write its prope		CO1	K2	7M
b)	probability de	nsity function	given by		dom variable with	CO1	K2	8M
	$f(x) = \begin{cases} kx \\ 2k \\ -kx \end{cases}$	$(2 \le x < x < x < x < x < x < x < x < x < x$	< 6) find κ	and mean valu	ie of x .			
				(OR)				
2.a)	Explain in det	ail about vecto	rs in R			CO1	K2	8M
b)	Explain about	basic math an	d variables	of R		CO1	K2	7M
			Unit-2	2				
3.a)	Describe poin	t estimation an	d interval e	stimation with	suitable examples	CO2	K2	7M
b)					a random sample $\sum_{i=1}^{n} x_i^2$, is an	CO2	КЗ	8M
	unbiased estin			w that $t-t=\frac{1}{r}$	$\sum_{i=1}^{n} \sum_{i=1}^{n} x_i$, is an			0111
				(OR)		I		1
4	Write about R	commands for	r Probabilit	y distribution f	unctions.	CO2	K3	15M
			Unit-3					
5	possible samp this population (i) the (ii) the (iii) the	les of size two n. Find mean of the p variance of the mean of samp	which can opulation. e populatio lling distrib	n be drawn with on. outions of mean sampling distr	d 11. Consider all neplacement from s	CO3	K2	15M
				(OR)				
6.	Write R functi	ions for applyi		est and chi-squ	are tests.	CO4	K3	15M
			Unit-4	1				
7	Given	1				CO5	K3	15M
	Treatment	1	2	Fabric 3	4			
	1	17.6	19.6	18.4	19.8			
	2	19.2	20.4	19.8	20.7			

3	K2	15M
5 17.4 18.8 17.8 16.5 Perform ANONA to test whether there is any significant difference between treatments and fabrics. (OR)	K2	15M
Perform ANONA to test whether there is any significant difference between treatments and fabrics. (OR)	K2	15M
treatments and fabrics. (OR)	K2	15M
(OR)	K2	15M
	K2	15M
8. Describe the R commands for forecasting the trends	K2	15M
		1 3101
Unit-5		
9.a) A coin is tossed 20 times and the following sequence of heads (H) and tails (T) is obtained.		
	K3	8M
Use Run test to determine at 5% level of significance if the coin is unbiased.		
b) Explain 1. Procedure of Testing of Hypothesis CO6	К3	7M
2. Statement of Neyman Pearson Lemma		
(OR)		
10a) Write a R program for Wilcoxon signed rank test CO6	K2	8M
b) Construct R program on Spearmen and Kendall's test CO6	K2	7M

[B19BSOE02]

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B. Tech II Semester (R19) Regular Examinations

FUZZY SETS AND FUZZY LOGIC

(Open Elective: offered by EM&H)

(Offered to: CE,CSE, ECE, EEE, IT & ME)

MODEL QUESTIONPAPER

TIME: 3Hrs.

Max. Marks: 75M

Answer ONE Question from EACH UNIT All questions carry equal marks ****

Develop a reasonable membership function for the following fuzzy sets based on height measured in centimeters: (i) "tall" (ii) "short" (iii) "not short"	Q	No.	Question	CO	KL	Marks
A based on height measured in centimeters: (i) "tall" (ii) "short" (iii) "not short" Develop the fuzzy membership functions for each of the following (i) Person X is considerably heavier than 100 pounds (ii) Car Z costs approximately \$30,000 (iii) $\mu_A(x) = 0$ for $x \le 5$ and $1-(x-5)^2$ when $x > 5$ OR We want to compare two sensors based upon their detection levels and gains setting for a universe of discourse of gain settings $X = \{0, 20, 40, 60, 80, 100\}$, the sensor detection levels for the monitoring of a standard item provides typical membership functions to represent the detection levels for each of the sensors; these are given below in standard discrete form $S1 = \begin{cases} 0 & 0.5 & 0.65 & 0.85 & 1 & 1 & 100 \\ 0 & 20 & 40 & 60 & 80 & 100 \end{cases}$ $S1 = \begin{cases} 0 & 0.5 & 0.65 & 0.85 & 1 & 1 & 100 \\ 0 & 20 & 40 & 60 & 80 & 100 \end{cases}$ $S1 = \begin{cases} 0 & 0.5 & 0.65 & 0.85 & 1 & 1 & 100 \\ 0 & 20 & 40 & 60 & 40 & 40 & 60 & 40.95 & 1 & 100 \\ 0 & 10 & 10 & 10 & 10 & 10 $						
B (i) Person X is considerably heavier than 100 pounds (ii) Car Z costs approximately \$30,000 (iii) $\mu_A(x) = 0$ for $x \le 5$ and $1-(x-5)^2$ when $x > 5$ TOR We want to compare two sensors based upon their detection levels and gains setting for a universe of discourse of gain settings $X = \{0, 20, 40, 60, 80, 100\}$, the sensor detection levels for the monitoring of a standard item provides typical membership functions to represent the detection levels for each of the sensors; these are given below in standard discrete form $S1 = \left\{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.85}{60} + \frac{1}{80} + \frac{1}{100} \right\} S2 = \left\{ \frac{0}{0} + \frac{0.45}{20} + \frac{0.6}{40} + \frac{0.8}{60} + \frac{0.95}{80} + \frac{1}{100} \right\}$ Find the following membership functions using standard fuzzy operations (i) $\mu_{S1 \cup S2}(x)$ (ii) $\mu_{S1 \cap S2}(x)$ (iii) $\mu_{\overline{S1} \cup S1}(x)$ (iv) $\mu_{\overline{S1} \cap S2}(x)$ (v) $\mu_{\overline{S1} \cap S2}(x)$ UNIT-II In the field of computer networking there is an imprecise relationship between the level of use of a network communication bandwidth and the latency experienced in peer-to-peer communications. Let X be the fuzzy set of use levels (in terms of percentage of full bandwidth used) and Y be a fuzzy set of latencies (in milliseconds) with the following $X = \left\{ \frac{0.2}{10} + \frac{0.5}{20} + \frac{0.8}{40} + \frac{1}{60} + \frac{0.6}{80} + \frac{0.1}{100} \right\} Y = \left\{ \frac{0.3}{0.5} + \frac{0.6}{1} + \frac{0.9}{1.5} + \frac{1}{4} + \frac{0.6}{8} + \frac{0.3}{20} \right\} CO - 2 K3$ Is find the Cartesian product represented by $R = X \times Y$. Now, suppose we have a second fuzzy set of bandwidth usage given by $Z = \left\{ \frac{0.3}{10} + \frac{0.6}{20} + \frac{0.6}{40} + \frac{0.9}{60} + \frac{1}{80} + \frac{0.5}{100} \right\}$ Find $S = Z$ o R using max-min composition.	1	A	based on height measured in centimeters: (i) "tall" (ii) "short" (iii)	CO -1	K3	7
We want to compare two sensors based upon their detection levels and gains setting for a universe of discourse of gain settings $X = \{0, 20, 40, 60, 80, 100\}$, the sensor detection levels for the monitoring of a standard item provides typical membership functions to represent the detection levels for each of the sensors; these are given below in standard discrete form $S1 = \left\{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.85}{60} + \frac{1}{80} + \frac{1}{100} \right\} S2 = \left\{ \frac{0}{0} + \frac{0.45}{20} + \frac{0.6}{40} + \frac{0.8}{60} + \frac{0.95}{80} + \frac{1}{100} \right\} CO - 1 K3$ Find the following membership functions using standard fuzzy operations (i) $\mu_{S1 \cup S2}(x)$ (ii) $\mu_{S1 \cup S2}(x)$ (iii) $\mu_{S1 \cup S1}(x)$ (iv) $\mu_{S1 \cap S2}(x)$ (v) $\mu_{S1 \cap S2}(x)$ (v) $\mu_{S1 \cap S2}(x)$ (vi) $\mu_{S1 \cap S2}(x)$ (vii) $\mu_{S1 \cup S2}(x)$ (viii) $\mu_{S1 \cup S1}(x)$ (viv) $\mu_{S1 \cap S2}(x)$ (v) $\mu_{S1 \cup S2}(x)$ (viii) $\mu_{S1 \cup S2}(x)$ (viiii) $\mu_{S1 \cup S2}(x)$ (viiii) $\mu_{S1 \cup $		В	(i) Person X is considerably heavier than 100 pounds(ii) Car Z costs approximately \$30,000	CO -1	K3	8
gains setting for a universe of discourse of gain settings $X = \{0, 20, 40, 60, 80, 100\}$, the sensor detection levels for the monitoring of a standard item provides typical membership functions to represent the detection levels for each of the sensors; these are given below in standard discrete form $S1 = \left\{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.85}{60} + \frac{1}{80} + \frac{1}{100} \right\} S2 = \left\{ \frac{0}{0} + \frac{0.45}{20} + \frac{0.6}{40} + \frac{0.8}{60} + \frac{0.95}{80} + \frac{1}{100} \right\} S1 = \left\{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.8}{80} + \frac{0.95}{100} + \frac{1}{80} + \frac{1}{100} \right\} S1 = \left\{ \frac{0}{10} + \frac{0.5}{20} + \frac{0.6}{40} + \frac{0.8}{100} + \frac{0.9}{80} + \frac{1}{100} + \frac{1}{100} \right\} S2 = \left\{ \frac{0}{10} + \frac{0.45}{20} + \frac{0.6}{40} + \frac{0.8}{40} + \frac{0.1}{80} + \frac{1}{100} + \frac{0.9}{100} + \frac{0.9}{100} + \frac{1}{100} +$			OR			
In the field of computer networking there is an imprecise relationship between the level of use of a network communication bandwidth and the latency experienced in peer-to-peer communications. Let X be the fuzzy set of use levels (in terms of percentage of full bandwidth used) and Y be a fuzzy set of latencies (in milliseconds) with the following $X = \left\{ \frac{0.2}{10} + \frac{0.5}{20} + \frac{0.8}{40} + \frac{1}{60} + \frac{0.6}{80} + \frac{0.1}{100} \right\} \text{membership functions:} $ $Y = \left\{ \frac{0.3}{0.5} + \frac{0.6}{1} + \frac{0.9}{1.5} + \frac{1}{4} + \frac{0.6}{8} + \frac{0.3}{20} \right\} \text{CO -2} \text{K3} 15$ find the Cartesian product represented by $R = X \times Y$. Now, suppose we have a second fuzzy set of bandwidth usage given by $Z = \left\{ \frac{0.3}{10} + \frac{0.6}{20} + \frac{0.7}{40} + \frac{0.9}{60} + \frac{1}{80} + \frac{0.5}{100} \right\}$ Find $S = Z$ o R using max-min composition.	2		gains setting for a universe of discourse of gain settings $X = \{0, 20, 40, 60, 80, 100\}$, the sensor detection levels for the monitoring of a standard item provides typical membership functions to represent the detection levels for each of the sensors; these are given below in standard discrete form $S1 = \left\{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.85}{60} + \frac{1}{80} + \frac{1}{100} \right\} S2 = \left\{ \frac{0}{0} + \frac{0.45}{20} + \frac{0.6}{40} + \frac{0.8}{60} + \frac{0.95}{80} + \frac{1}{100} \right\}$ Find the following membership functions using standard fuzzy operations (i) $\mu_{S1 \cup S2}(x)$ (ii) $\mu_{S1 \cap S2}(x)$ (iii) $\mu_{S1 \cup S2}(x)$ (iv) $\mu_{S1 \cap S2}(x)$ (v) $\mu_{S1 \cup S2}(x)$	CO -1	K3	15
between the level of use of a network communication bandwidth and the latency experienced in peer-to-peer communications. Let X be the fuzzy set of use levels (in terms of percentage of full bandwidth used) and Y be a fuzzy set of latencies (in milliseconds) with the following $X = \left\{ \frac{0.2}{10} + \frac{0.5}{20} + \frac{0.8}{40} + \frac{1}{60} + \frac{0.6}{80} + \frac{0.1}{100} \right\} \text{membership functions:} $ $X = \left\{ \frac{0.2}{10} + \frac{0.5}{20} + \frac{0.8}{40} + \frac{1}{60} + \frac{0.6}{80} + \frac{0.1}{100} \right\} Y = \left\{ \frac{0.3}{0.5} + \frac{0.6}{1} + \frac{0.9}{1.5} + \frac{1}{4} + \frac{0.6}{8} + \frac{0.3}{20} \right\} $ CO -2 K3 15 In the Cartesian product represented by $R = X \times Y$. Now, suppose we have a second fuzzy set of bandwidth usage given by $Z = \left\{ \frac{0.3}{10} + \frac{0.6}{20} + \frac{0.7}{40} + \frac{0.9}{60} + \frac{1}{80} + \frac{0.5}{100} \right\}$ Find $S = Z$ o R using max-min composition.						
OR	3		between the level of use of a network communication bandwidth and the latency experienced in peer-to-peer communications. Let X be the fuzzy set of use levels (in terms of percentage of full bandwidth used) and Y be a fuzzy set of latencies (in milliseconds) with the following $X = \left\{ \frac{0.2}{10} + \frac{0.5}{20} + \frac{0.8}{40} + \frac{1}{60} + \frac{0.6}{80} + \frac{0.1}{100} \right\} \text{membership functions:} $ $Y = \left\{ \frac{0.3}{0.5} + \frac{0.6}{1} + \frac{0.9}{1.5} + \frac{1}{4} + \frac{0.6}{8} + \frac{0.3}{20} \right\}$ find the Cartesian product represented by $R = X \times Y$. Now, suppose we have a second fuzzy set of bandwidth usage given by $Z = \left\{ \frac{0.3}{10} + \frac{0.6}{20} + \frac{0.7}{40} + \frac{0.9}{60} + \frac{1}{80} + \frac{0.5}{100} \right\}$ Find $S = Z$ o R using max-min composition.	CO -2	К3	15

4	A	In a computer engineering different logic families are often compared on the basis of their power-delay product. T he fuzzy set F is the logic families $F = \{NMOS, CMOS, TTL, ECL, JJ\}$. The range of delay time $D = \{0.1, 1, 10, 100\}$ in Nano seconds. The power dissipation in micro watts $P = \{0.01, 0.1, 1, 10, 100\}$. and the fuzzy relations R_1 (D x F) and R_2 (F x P) are as given below: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO -2	К3	8
		By using max-min composition, obtain a fuzzy relation between delay time and power dissipation. Let R be a fuzzy relation defined on the set of cities representing the			
	В	concept 'very near'. Discuss the properties of fuzzy equivalence relation.	CO -2	К3	7
		UNIT-III			
5	A	The following are the fuzzified outputs of three fired rules: μ_{c_1} 0.5 0.25	CO -3	K3	8
	В	Suppose a fuzzy set young is defined as follows young = $\{(15,0.5), (20,0.8), (25,0.8), (30,0.5), (35,0.3)\}$. Find the crisp value of young	CO -3	К3	7
		using mean of maxima method OR			
	A	Explain centroid method for defuzzification.	CO -4	К3	7
6	В	The width of a road as narrow and wide is defined by two fuzzy sets, whose membership functions are plotted as shown below. If a road with its degree of membership value is 0.4 then what will be its width (in crisp) measure. $ \frac{\mu_{\text{narrow}}}{5} = \frac{\mu_{\text{narrow}}}{7} = \frac{\mu_{\text{nide}}}{8} = \frac{10}{10} $	CO -4	K3	8

		UNIT-IV				
	A	Construct a truth table for $(p \to r) \Lambda (q \to r) V (\sim p \Lambda q)$	CO -5	K3	7	
7	В	Write the symbolic form of the following statement "you cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old"	CO -5	К3	8	
		OR				
	Given P: Bob is brilliant; T(P) = 0.8; Q: John is brilliant; T(Q) = 0.6; Find the truth values of the following fuzzy propositions (i) Bob is not brilliant (ii) Bob is brilliant and so is John (iii) Either Bob or John is brilliant (iv) if Bob is brilliant then so is John (v) Bob is brilliant if and only if John is brilliant		CO -5	K3	15	
		UNIT-V				
	9	Explain in detail any one application of Fuzzy Logic Controller.	CO -6	K3	15	
	OR					
1	10	Explain how would you design a washing machine to have fuzzy inference in a real world environment. In your discussion include the following factors (i) A practical choice of the fuzzy input & output variables (ii) A practical no. of quantizations and choice of linguistic labels (iii) Draw and indicate a reasonable membership functions for each fuzzy variable. (iv) Indicate practical values of universe of discourse (v) Three examples of rules (vi) The most practical approach of defuzzification technique	CO -6	K3	15	