

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) UG Programmes CE, CSE, ECE, EEE, IT & ME are Accredited by NBA, Accredited by NAAC with A⁺ CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204

Estd:1980

Regula	III / IV - B.Tech. I - Semester									
	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING									
	SCHEME OF INSTRUCTION & EXAMINATION (With effect from 2021-22 admitted Batch onwards)									
Course Code	e Course Name			Cr	L	Т	Р	Int. Marks	Ext. Marks	Total Marks
B20AM3101	Design and Analysis Algorithms	PC	3	3	0	0	30	70	100	
B20AM3102	Operating Systems		PC	3	3	0	0	30	70	100
B20AM3103	Machine Learning		PC	3	3	0	0	30	70	100
#PE-I	Professional Elective -	Ι	PE	3	3	0	0	30	70	100
#OE-I	Open Elective-I		OE	3	3	0	0	30	70	100
B20AM3108	Operating Systems Compiler Design La	& ab	PC	1.5	0	0	3	15	35	50
B20AM3109	Machine Learning I	Lab	PC	1.5	0	0	3	15	35	50
B20HS3102	Soft Skills (Skill Oriented Cours	e)	SOC	2		0	2		50	50
B20MC3104	Competitive Programm	ning	MC	0	0	0	3			
B20AM3110	Summer Internship		PR	1.5					50	50
		21.5	19	0	8	180	520	700		

	Course Code	Course					
	B20AM3104	Internet of Things					
#PE-I	B20AM3105	Data Visualization using Tableau					
	B20AM3106	Network Programming					
	B20AM3107	Natural Language Processing (NPTEL)					
#OE-I	Student has to study one Open Elective offered by CE or ECE or EEE or ME or						
	S&H from the list	S&H from the list enclosed.					

0	CodeCategoryLTPCI.ME.M								Exam	
B20 A	M3101	PC	3	0	0	3	30	70	3 Hrs.	
		DE	SIGN AN	ND ANA	LYSIS)F ALGO	RITHM	S		
				(F	or AIML)				
Cours	e Objectiv	es:								
1.	Analyze the asymptotic performance of algorithms									
2.	2. Write rigorous correctness proofs for algorithms.									
3.	Demonst	rate a familiari	ty with n	najor alg	orithm de	sign parac	ligms and	l data structure	\$S	
4.	Synthesiz	ze efficient alg	orithms i	n commo	on engine	ering desi	gn situati	ons		
Cours	e Outcome	es:								
S. No				Out	come				Knowledge	
									Level	
1.	Apply m	athematical a	nalysis n	nethods	to analy	se the alg	orithm r	unning times	КA	
	using asy	mptotic notation	ons						<u>N</u> 4	
2.	Compare	and understan	d how th	e choice	of data st	ructures in	mpact the	e performance	K3	
	of variou	s greedy algori	thms	_					K3	
3.	Describe	, apply and	analyze	the co	omplexiti	es of Dy	ynamic	Programming	К3	
	Algorith	ns								
4.	Describe	, apply and a	nalyze tł	ne comp	lexity of	Backtrac	king and	Br <mark>anc</mark> h and	КЗ	
	Bound, a	nd explain the	situations	s which o	call for us	age of the	se paradi	gms .		
5.	Infer lov	ver bounds fo	or comm	ion prot	olems lik	e searchi	ng, sorti	ng, merging,	К2	
	selection	, Understand tr	ie concep	ots of P, I	NP classe	S				
				61		<u>c</u>				
	INT	PODICTIO	N•	51		0				
	Gett	ing Started I	N.	sort and	alvzina a	laorithms	Designi	ng algorithms	Growth of	
	Fun	ctions: Asym	ntotic No	otation	Standard	notation	s and co	ommon functi	ions Master	
	- metl	hod for solving	recurren	ces	Stundurd	notation	s und ex	Jinnon Tunet	ions, musici	
UNIT		TIDE AND CC	NOUER	lee5						
(14Hr	(s) Gen	eral method. H	Finding n	naximun	n and mi	nimum. N	lerge sor	t. Ouick sort.	Performance	
	Mea	surement. Sel	ection Pr	oblem.	A Worst	-Case Op	timal Al	gorithm. Stras	sen's matrix	
	mult	tiplication, con	vex hull	Problem	- OuickH	ull Algori	thm	5		
		1 /			<u> </u>	0				
	Sets	and Disjoint s	et union,	Union a	nd Find C	perations				
	, ТН	E GREEDY M	IETHO):		•				
UNIT-	Gen	eral method,	Knapsac	k proble	em, Job	sequencir	ig with	deadlines, Mi	inimum cost	
(10 Hr	span	ning trees- Pri	im's algo	rithm, K	Truskal's	algorithm	, Optima	l storage on ta	pes, Optimal	
	mer	ge patterns, Hu	iffman co	ding, Si	ngle sour	ce shortes	t paths.	č	- •	
	I									

	DYNAMIC PROGRAMMING:						
UNIT-III	General method, Multistage graphs, All pairs shortest paths, Optimal binary search trees,						
(12Hrs)	String editing, 0/1Knapsack, The travelling salesperson problem						
	BACKTRACKING:						
	General method, 8-Queens problem, Sum of subsets, Graph colouring, Hamiltonian cycles						
	BRANCH AND BOUND:						
UNIT-IV	The method, Least Cost (LC) Search, The15-puzzle problem, Control abstractions for LC						
(12Hrs)	Search, FIFO Branch-and-Bound, LC Branch-and-Bound, 0/1 Knapsack problem: LC						
	Branch and Bound, FIFO Branch-and-Bound, Travelling salesperson problem: LC Branch						
	and Bound						
	LOWER BOUND THEORY:						
	The method, Comparison trees, Ordered Searching, Sorting, Selection, Oracles and						
UNIT-V	adversary arguments, Merging, Largest and Second largest						
(8Hrs)	NP-HARD AND NP-COMPLETE PROBLEMS:						
	Basic concepts, Nondeterministic Algorithms, The Classes NP-hard and NP-complete,						
	Cook's theorem. Modular Arithmetic.						
Text Books							
1.	Fundamentals of Computer Algorithms 2nd edition by Ellis Horowitz, SartajSahni, S.						
	Rajasekharan, university press, 2008						
2.	Introduction to Algorithms 3rd edition by Thomas H. Cormen, Charles E. Leiserson, Ronald						
	L.Rivest, Clifford Stein, PHI, 2010						
Reference	Books:						
1.	Design and Analysis Algorithms – Parag Himanshu Dave, Himanshu Bhalchandra Dave						
	Publisher: Dhanpat Rai & co, 2017						
2.	Algorithm Design: Foundations, Analysis and Internet examples, M. I. Goodrich and						
2	R. I omassia, Johnwiley and sons, 2006						
5.	Introduction to the Design and Analysis of Algorithms, Anany Levitin, PEA, 3rd Edition.						
4.	Foundations of Algorithms, K. Neapontan and K. Naimpour, Jones and Bartieu,						
5	Pearson, 2011 Advensed Data Structures – Datar Dress, Combridge University Press, 2008						
J.	Auvanceu Data Structures – reter Brass, Cambridge University Press, 2008						
1	b. https://onlinecourses.pptel.ac.in/noc10_cs/17/preview						
2	https://onlinecourses.swayam2.ac.in/cec20_cs03/preview						
<i>2</i> .	https://ocw_mit_edu/courses/electrical-engineering-and-computer-science/6-046i-design-and-						
3.	analysis-of-algorithms-spring-2015/						
	$\frac{1}{2}$						

0	Code	Category	L	Т	Р	C	I.M	E.M	Exam
B20 A	AM3102	PC	3	0	0	3	30	70	3 Hrs.
				OPER A	TING S	SYSTEN	MS		
					(For AI	ML)			
Cours	se Objec	tives:							
1.	Introduce to the internal operation of modern operating systems								
2.	Define, explain, processes and threads, mutual exclusion, CPU scheduling, deadlock, memory management, and file systems								
3.	Underst	and File System	s in Op	erating S	System li	ke UNIX	X/Linux and	Windows	
4.	Understand Input Output Management and use of Device Driver and Secondary Storage (Disk) Mechanism								
5	Analyze	e Security and Pr	otectio	n Mecha	nism in (Operatin	ig Systems		
Cours	se Outco	mes:							
S. No				C	Outcome				Knowledge Level
1.	Describ System,	e various gener Sys <mark>tem calls</mark>	rations	of Ope	rating S	ystems	and functio	ns of Operation	ng K2
2.	Describ Schedul	e t <mark>he conce</mark> p ing <mark>Algorithm</mark> s	t of and IP(process	s, threa	ds and	d analyze	various CF	PU K2
3.	Illustrat	e memory mana	gement	strategie	es	RIN	G COL	EGE	K3
4.	Illustrat	e deadlocks, file	s and S	econdar	y-Storage	e Structu	ire		K3
5.	Summative Summat	rize Security an rating System lil	d Prote ke UNI	ection M X/Linux	echanisn and Win	n in Op idows	erating System	ems. Understa	nd K3
					SYLLA	BUS			
UNI (6 H	Operating Systems Overview: Operating system functions, Operating system structure, Operating systems operations, Computing environments, Open-Source Operating Systems.NIT-ISystem Structures: Operating System Services, User and Operating-System Interface, systems calls, Types of System Calls, system programs, operating system structure, operating system debugging, System Boot.								
UNI (10 I	T-II Hrs)	Process Conce communication, Multithreaded ssues. Process Schedul processor schedu inter-process Co	ept: F Comm Progra ling: B ling, T	Process unicatior amming asic cond hread scl nication	scheduli i in clien : Multit cepts, Sch neduling. : Race co	ng, Oj t server hreading heduling	perations o systems. g models, g criteria, Scl s, Critical Re	n processes, Thread librari heduling algor	Inter-process es, Threading ithms,Multiple exclusion with

		busy waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message passing, Barriers, Classical IPC Problems - Dining philosophers problem, Readers and writers						
		problem.						
		Memory-Management Strategies: Introduction, Swapping, Contiguous memory						
TINI	тш	allocation, Paging, Segmentation.						
(06 1	I -111 Irc)	Virtual Memory Management: Introduction, Demand paging, Copy on-write, Page						
(001	115)	replacement, Page replacement Algorithms, Frame allocation, Thrashing, Memory-						
		mapped files, Kernel memory allocation.						
		Deadlocks: Resources, Conditions for resource deadlocks, Deadlock detection and						
		recovery, Deadlock avoidance, Deadlock prevention.						
UNI	T-IV	File Systems: Files, Directories, File system implementation, management and						
(10 I	Hrs)	optimization.						
		Secondary-Storage Structure: Overview of disk structure, and attachment, Disk						
		scheduling, RAID structure, Stable storage implementation.						
		System Protection: Goals of protection, Principles and domain of protection, Access						
UNI	T-V	matrix, Access control, Revocation of access rights.						
(08 .	Hrs)	System Security: Introduction, Program threats, System and network threats.						
		Case Studies: Linux, Microsoft Windows.						
T 1	D. 1.							
Text	BOOKS							
1.	Silber	rschatz A, Galvin P B, and Gagne G, Operating System Concepts, 9th edition, Wiley, 2013.						
	Taner	baum A S, Modern Operating Systems, 3rd edition, Pearson Education, 2008. (for						
2.	Interp	process Communication and File systems.)						
Refer	ence B	Books:						
4	Dhan	ndhere D M, Operating Systems A Concept Based Approach, 3rd edition, Tata McGraw-						
1.	Hill, 2	2012.						
2	Stalli	ngs W, Operating Systems -Internals and Design Principles, 6th edition, Pearson Education,						
2.	2009							
3.	Nutt (G, Operating Systems, 3rd edition, Pearson Education, 2004						
e-Res	ources	:						
1.	https:	//nptel.ac.in/courses/106/105/106105214/						

CodeCategoryLTPCI.ME.MI							Exam			
B20AI	M3103	PC	3			3	30	70	3 Hrs.	
	MACHINE LEARNING									
				(Commo	on to AIN	1L & CSI))			
Course	e Objec	tives: Studen	ts are exp	ected to						
1	1 Explain the basic concepts and techniques of Machine Learning									
2	2 Demonstrate regression, classification methods.									
3	Illustrate the concepts of dimensionality reduction, artificial neural networks and reinforcement									
	learnin	g								
4	Show	the applicatio	on of macl	hine learn	ing mode	l evaluation	on and opti	mization tec	hniques	
~										
Course	Outcor	mes: At the e	nd of the	course stu	idents wil	ll be able t	0			
S. No				Ou	tcome				Knowledge	
1	Englai		a of in our	dianta an	d		a albima las		Level	
1	Explai	n the concept	is of ingre	dala and	d prelimit	haries of n	achine lea	irning	K2	
2	Apply	tree models,	Intear mo	dels and one	instance-t	ased mod	eis		K3 V2	
5	Domor	y and constru		of dimo	ncionality		n tochnic	was model	KJ	
4	evalua	tion and selec	ction tech	niques	lisionanty	ieuuene	in teening	lues, moder	K3	
5	Apply	the concepts	of artifici	ial neural	networks	reinforce	ment learr	ning	КЗ	
	rippij	the concepts			networks	, 1011110100			113	
		ACCESS OF	8		SYLLAB	US	CULI	EGE		
		The ingredi	ents of	machine	learning	: Basic c	oncepts, d	esigning a	learning system,	
		Issues in ma	chine lear	rning, Tyj	pes of ma	chine lear	rning, Tas	ks: the prob	lems that can be	
		solved with	machine	learning,	Models	the outp	ut of mac	chine learnin	g, Features, the	
UNI	T-I	workhorses o	of machin	e learning	5.					
(12 H	Hrs)	Preliminarie	es: The c	urse of d	imension	ality, Ove	rfitting, T	raining, Tes	t and Validation	
		sets, The co	nfusion 1	natrix, T	he accur	acy metu	rics: Accu	racy, sensiti	vity, specificity,	
		precision, re-	call, F1 n	neasure, I	ROC curv	ve, Unbala	inced data	sets, Naïve I	Bayes Classifier,	
		Some basic s	statistics:	variance,	, covarian	ce, bias-v	ariance tra	deoff.		
		Tree Models	s: Decisio	n Trees.						
UNI	Г-ІІ	Distance Ba	sed Mode	els: Introd	uction, N	earest Nei	ghbors cla	ssification.		
(10 H	Hrs)	Linear Mo	dels: Th	e least-so	quares n	nethod: U	nivariate	linear regr	ession, Logistic	
()		Regression, Support Vector Machines: Linear SVM Classification, Nonlinear SVM								
Classification, SVM Regression (Textbook 4)										
		Footunes V	inda of	footure T	laatura to	noformet	ional There	sholding or	d dispratization	
TINIT	TTT	Normalizatio	inus of 1	nleto East	veature tr		notion and	sholuing an	a discretization,	
	Irc)		mbles: V	Voting CL	ures, real	Ragging	random f	rests Poss	ting: AdaBoost	
	113)	Gradient Roc	noting V	Boost	assiiici, 1	baggillg,		лезіз, DUUS	ing. Auadoost,	
Gradient Boosting. AGBoost										

UNI	T-IV	Dimensionality Reduction: PCA, Kernel PCA (Textbook 4), LDA								
(08	Hrs)	Model Evaluation and Optimization: Cross Validation, Grid Search, Regularization								
		Neurons, NNs, Linear Discriminants: The Neuron, Neural Networks, The perceptron,								
UN	IT-V	Multilayer perceptron's: Going forwards, Going backwards: Backpropagation of error,								
(10	Hrs)	Multilayer perceptron in practice, Examples of using MLP. Reinforcement Learning:								
		Overview, Example, Markov Decision Process, Uses of Reinforcement Learning								
TEX	TBOOK	XS:								
1.	Introdu	action to Machine Learning, Alpaydin E, MIT Press (2014) 3rdEdition								
C	Machi	ne Learning: The art and science of algorithms that make sense of data, Peter Flach,								
2	Cambr	idge, 2012								
3	Machi	ne Learning: An algorithmic perspective, Stephen Marsland, 2nd edition, CRC press, 2014.								
4	Hands	-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, Aurélien Géron, 2nd								
4	Edition	n, O'Reilly Publications, 2019								
REF	ERENC	E BOOKS:								
1	The el	ements of statistical learning, Data Mining, Inference and Prediction, Trevor Hastie, Robert								
1.	Tibshi	rani, Jerome Friedman, Second edition, Springer, 2009.								
2.	. Machine Learning in Action, Peter Harington, 2012, Cengage.									
3	Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learning									
5.	Tensor	flow, Sebastian Raschka, Vahid Mirjalili, Second edition, 2020								
Onlin	ne MOC	OC Courses:								
1.	"Mach	ine Learning" course by Andrew Ng on Coursera								
2.	"Intro	duction to Machine Learning (IITKGP)" by Prof. Sudeshna Sarkar, on Swayam								
3.	"Mach	ine Learning A-Z (Python & R in Data Science Course)" on Udemy								
Usefu	ıl Refer	ence Links:								
1.	"Linea	r Discriminant Analysis", https://sebastianraschka.com/Articles/2014_python_lda.html								
2	Pythor	Machine Learning Cookbook-Practical Solutions from Preprocessing to Deep Learning,								
۷.	Chris A	Albon, Oreilly, 2018.								
	"Princ	ipal Component Analysis versus Linear Discriminant Analysis",								
3.	https://	/medium.com/analytics-vidhya/illustrative-example-of-principalcomponent-analysis-pcavs-								
linear-discriminant-analysis-lda-is-105c431e8907										
Δ	"A ge	entle introduction to K-fold cross-validation", https://machinelearningmastery.com/k-								
4. foldcross-validation/										
5	Grid	search for model tuning", https://medium.com/analyticsvidhya/illustrative-example-								
5.	ofprine	cipal-component-analysis-pca-vs-lineardiscriminant-analysis-lda-is-105c431e8907								
6	"Regu	arization in Machine Learning", https://towardsdatascience.com/regularization-inmachine-								
0.	learnin	<u>g76441ddcf99a</u>								

C	ode	CategoryLTPCI.ME.M					Exam		
B20A	M3104	PE	3	0	0	3	30	70	3 Hrs.
			I	NTERNE	T OF T	HINGS			
	(Common to AIML & CSD)								
Pre-re	quisites:	Computer Net	works						
Course	Course Objectives: Students are expected								
1.	1. To understand building blocks of IoT and their characteristics								
2.	To Know various architectures and protocols in IoT and security issues								
3.	To use cloud services for data analytics in IoT applications								
4.	To deve	lop IoT applica	tions usi	ng Ardui	no progr	amming.			
Course	Outcom	es: At the end	of the co	urse stude	ents will	be able to	O		
S No				Oute	rome				Knowledge
5.110				Out	come				Level
1.	Discuss	various Design	ns of IoT	and IoT a	architect	ures			K2
2.	Illustrat	e various comn	nunicatio	n protoco	ols in IoT				K3
3.	Use of	various sensor	s and A	ctuators :	in IoT a	applicatio	ns and Im	plement IoT	K3
	applicat	ions using Ard	uino.				<u> </u>		
4.	Analyse	data in IoT ap	plication	S.					K4
5.	Analyse	various securit	ty issues	IoT appli	cations.				K4
	5		-	NICIA	ic co	UNG	cou T		
		Action 24		SY	LLABU	S			
	Int	roduction to I	nternet	of Thing	s: Defin	ition &Cl	haracteristi	cs of IoT, Ph	ysical design
UNIT	$[-I] \begin{bmatrix} 0I \\ C \end{bmatrix}$	IOI-Inings in	lo1, lo1 Iodola &	protocols	s, Logica Tlavala	al Design	01 101 - 10	I Functiona	BIOCKS, IOI
(10 H	rs) $\begin{bmatrix} c_0 \\ b_1 \end{bmatrix}$	F Network Ar	chitectu	AFI S, 10 re and T		Drivers	Sehind Nev	ipiales.	rchitectures
		mparing IoT A	rchitectu	res A Sir	nnlified	IoT Arch	itecture		Architectures,
				105, 11 511	npinieu	101 / 1101			
	Со	mmunication	Techn	ologies:	wired	Comm	unication	Technologie	es, wireless
UNIT	-II Co	mmunication T	echnolog	gies.				U	
(10 H	rs) Io7	CAccess Tech	nologies:	PHY/MA	AC Laye	er (IEEE 8	802.15.4), I	LoRAWAN, I	RPL.
	Me	essage Commu	nication	Protocol	ls for Co	onnected	Devices	- CoAP, XM	PP, MQTT.
	ΙΟ	T Physical dev	vices and	Endpoir	n ts: Basi	c building	g blocks of	an IOT devi	ce.
	Sei	nsors, Particij	patory s	ensing,	RFIDs:	Sensor	Technolog	y, Participat	ory sensing,
UNIT	-III	ustrial IOT	and Au	tomotive	IOT,	Actuator	, Radio	Frequency	Identification
(10 H	rs) tec	hnology.	• • • • •	• •		C A 1 ·	a		
		ogramming w	ith Ard	uino: Fe	atures of	of Arduin	io, Compo	onents of Ar	duino board,
		uino IDE, Pro h Arduine	grammin	ig Elemer	ns, Case	studies:	1 raine co	ntroi system,	DHI Sensor
	wit	n Aluuillo.							

TINIT		Data Acquiring, Organising, Processing and Analytics: Introduction, Data Acquiring									
	[-1 V	and storage, Organising the Data, Transaction, Business Processes, Integration and									
(ð H	(rs)	Enterprise Systems, Analytics, Knowledge Acquiring, Managing and Storing Processes.									
		IoT Privacy, Security and Vulnerabilities Solutions: Vulnerabilities, Security									
	T X7	Requirements and Threat Analysis, IoT Security Tomography and Layered Attacker									
UNI	I-V	model, Identity management and establishment, Access control secure message									
(8 H	rs)	communication, Security models, profiles and protocols for IoT.									
		Case studies illustrating IoT Design: Home Automation, Environment, Agriculture									
TEX	ГВОС	DK:									
1	Inter	net of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities									
1.	Press	s, 2015.									
	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of										
2.	2. Things - David Hanes, Gonzalo Salgueiro, Patrick Grossetete Robert Barton, Jerome Henri										
	2475	0 Copyright© 2017 Cisco Systems, Inc. Published by: Cisco Press 800 East 96th Street.									
3	Inter	net of Things: Architecture and Design Principles by Raj Kamal, McGraw Hill Education									
5.	priva	ate limited, 2017.									
4.	Inter	net of Things, Jeeva Jose, Khanna Publishing; First edition (2018).									
REFE	EREN	CE BOOKS:									
1.	Desi	gning the Internet of Things, Adrian McEwen and Hakim Cassimally, Wiley, 2013									
2.	Getti	ng Started with the Internet of Things Cuno Pfister, Oreilly, 2011									
2	Getti	ng Started with Raspberry Pi, Matt Richardson & amp; Shawn Wallace, Reilly (SPD),									
3.	2014										
E-Re	esour	ces: Estd. 1980									
1.	Intro	duction to Internet of Things, https://swayam.gov.in/nd1_noc20_cs66/preview									
2	An I	ntroduction to Programming the Internet of Things(IoT) specialization,									
2.	<u>http</u>	os://www.coursera.org/specializations/iot									

Co	CodeCategoryLTPCI.ME.MExam									
B20AI	M3105	PE	3			3	30	70	3 Hrs.	
			DATA V	VISUALIZ	ZATION	USING TA	ABLEAU			
					(For AIM	L)				
Course	e Object	ives: The stu	dents able	to						
1	1 Understand basic concepts of Tableau									
2	2 Understand concepts of Tableau Filters, groups and sets									
3	Unders	tand concept	s of Table	au calculat	ed fields a	nd table ca	alculations			
4	Unders	tand and drav	w the Tabl	eau charts						
5	Study a	nd analyze th	he dashboa	urds						
Course	Outcon	nes: At the en	nd of the c	ourse stud	ents will b	e able to				
S. No				Or	itcome				Knowledge	
5110				0.					Level	
1	Outline	the basic co	ncepts of '	Fableau an	d connect	to differen	t databases	5	K2	
2	Illustra	te data organ	ization in	Tableau us	sing Filter	s, groups a	nd sets		K3	
3	Illustra	te different T	Cableau cal	culations (o enhance	data			K3	
4	Demon	strate about	different T	ableau cha	arts and ap	ply that kr	iowledge to	o draw charts	K3	
_	for vari	ous applicati	ions.							
5	Apply	the knowledg	ge and crea	ite differer	it Tableau	dashboard	s.		K3	
		100	<u> </u>	ENIC		110				
		D 1 111			SYLLAB					
		Basics: Wha	it is lable	au, Uses C	of Tableau	, Tableau	Versions, 1	ableau Archi	tecture, Tableau	
UNI	T-I	New Feature	to Access	o install I	ableau, C	ing to a	to text me	n Docting fr	g to Excel files,	
(10 H	Hrs)	Connecting to Access databases, Connecting to a SQL Server, Fasting from a Chopolard,								
		Applying filt	tors Morgi	ng multipl	liueistaliui	rces	ions and m	easures, Char	ignig data types,	
		Apprying in	lers, mergi	ng munip	le uata sou	1005				
UNI	L'II	Simplifying	and Sorti	ng Data.	Sorting d	ata in Tahl	eau Enhar	ncing View w	ith Filters Sets	
(10 F	I-II Irs)	Groups and	Hierarchie	s How tal	olean uses	date fields			iui i iiteis, bets,	
(101		Groups, und	1110101010110	5, 110 w tu	sieuu uses	dute menus	·			
		Creating Ca	lculations	to enhan	ce data:					
		What is agg	regation?	: Dimensio	on versus A	Attribute				
		What are c	alculated	fields an	d Table	calculation	ns?: How	Do Calculate	d Fields Work,	
UNIT	-III	Creating Cal	lculated F	ields with	the Calcu	ulation Ed	itor, Perfo	rming Ad H	oc Calculations,	
(12 H	Irs)	How Do Tab	le Calcula	tions Wor	k? A Word	l on Calcu	lations and	Cubes, Using	the Calculation	
		Editor to Bu	ild Calcula	ated Fields	, Ad Hoc	Calculated	l Fields, Bu	uilding Formu	las Using Table	
		Calculations	, Adding	Flexibility	to Calcu	lations wit	h Paramet	ers, Why Yo	u Should Learn	
		Level of Det	ail Express	sions						
	ľ									

		Tableau Charts:						
		Creating Univariate Charts: Introduction, Creating tables, Creating bar graphs, Creating pie						
		charts, Sorting the graphs, Creating histograms, Creating line charts, Using the Show Me						
UNI	T-IV	toolbar, Creating stacked bar graphs, Creating box plots, Showing aggregate measures						
(12	Hrs)	Creating Bivariate Charts: Introduction, Creating tables, Creating scatter plots, Swapping						
		rows and columns, Adding trend lines, Selecting color palettes, Using dates						
		Creating Multivariate Charts: Introduction, Creating facets, Creating area charts, Creating						
		bullet graphs, Creating dual axes charts, Creating Gantt charts, Creating heat maps						
TINT	IT V	Dashboards:						
	11-V 11-v	Dashboards in Tableau, Types of Dashboards, Building an Exploratory Dashboard, Building						
(08	Hrs)	an Explanatory Dashboard						
TEX	ГВООК	S:						
1	Tableau	u Data Visualization Cookbook, Ashutosh Nandeshwar, Packt Publishing Ltd, First Edition,						
1.	2013 [CHAPTER 1&4]							
2	Tableau Your Data!, Daniel G. Murray, John Wiley & Sons, Inc., Second edition, 2016 [CHAPTER							
Z	2&3]							
2	Comm	unicating Data with Tableau, Ben Jones, O'Reilly Media, Inc., First Edition, 2014 [CHAPTER						
3	5]							
REFI	ERENC	E BOOKS:						
1	Ryan S	Bleeper, Practical Tableau: 100 Tips, Tutorials, and Strategies from a Tableau Zen Master 1st						
1.	Edition	, Kindle Edition						
C	Molly 1	Monsey and Paul Sochan, Tableau for Dummies (For Dummies (Computer/Tech)), Publisher:						
۷.	For Du	mmies_td_1980 AUTONOMOUS						
3.	Joshua	N. Milligan, Learning Tableau 10, Packt Publishing						
4	Shweta	Sankhe-Savale, Tableau Cookbook – Recipes for Data Visualization						
Usefu	l Refere	ence Links:						
1.	https://	www.educba.com/tableau-visualization/						
2.	https://	www.tableau.com/learn/articles/data-visualization						
3.	https://t	towardsdatascience.com/tableau-visualizations-dc9e544dc9a8						
4.	https://	wmich.edu/sites/default/files/attachments/u1158/2019/Tableau%20WMU_2.pdf						
5	https://j	programmer-books.com/wp-content/uploads/2019/10/Creating-Data-Stories-with-Tableau-						
э.	Public.	<u>pdf</u>						

0	CodeCategoryLTPCI.ME.MExam								
B20A	DAM3106 PE 3 3 30 70					70	3 Hrs.		
			NET	WORK P	ROGR	AMMIN	r u		
				(For	·AIML)			
Cours	Course Objectives: Students are expected to learn								
1	Understanding of core network programming by using sockets and transport layer protocols like								
1	TCP and	UDP							
2	Understa	nding of inter	process c	communica	ation an	d impleme	entation of di	fferent for	ms of IPC in
2	client-ser	rver environme	ent						
3	Get an e	exposure to va	rious app	lication la	yer pro	tocols wh	ich are desig	gned using	sockets and
5	transport	layer protocol	S						
Course	e Outcom	es: At the end	of the cou	rse studen	ts will b	e able to			-
S No				Outer	me				Knowledge
5.110				oute					Level
1	Explain	the client-serve	er paradig	m and soc	ket struc	ctures			K2
2	Describe	the basic con	cepts of	TCP sock	ets and	develop 7	CP echo clie	ent-server	К3
	program	S							
3	Discuss	the UDP socke	ts and UI)P echo cli	ient-serv	ver program	ms		K2
4	Explain	Socket options	and abili	ty to under	stand II	PC.			K2
5	Apply t	he application	ns of so	ckets and	demo	nstrate sk	ill to desig	n simple	К3
	applicati	ons like FTP, 7	FELNET	etc.	EEK	INGO	OLLEG		
		Estd. 1980			AUTC	NOMO	US		
				SYL		5			
		roduction to N	etwork	Programn	ning: O	SI model-	transport laye	er protocols	s: TCP, UDP
	I-I and	SCIP-networ	k archite	cture: cli	ent-serv	er and pe	eer-to-peer s	ystems, So	ockets-socket
(12 H	rs) Add	iress structures	: IPV4, IF	vo and Ge	eneric-v	alue result	arguments-E	syte orderi	ng functions-
	Вуб	e manipulation	Tunctions	s-Address	convers	ion functio	ons		
	TC	D. introduction	to TCD	TCD	nantion	octoblich	mont and tar	mination 7	
UNIT	$-II \mid \frac{IC}{Stat}$	- Elementary		-ICF COI	Socket (connect bi	nd listen acco	ant fork av	ac function
(10 H	rs)	current servers	-Close fu	n_{ction}	d and w	rite functio	nu-1131011-au	ept-tork-ex	ee function-
	con	current servers	-Close Iu				5115		
	ТСІ	Pecho client s	erver pro	oram-oeter	ockname	e and getn	eername fund	ctions I/O	multiplexing
UNIT	UNIT-III I/O models-Select function-TCP echo server using select function-shutdown fun								function-Poll
(10 H	(10 Hrs) function								
	Turk								
	UD	P: Introduction	n to UDF	-differenc	e betwe	en TCP a	and UDP-rec	vfrom() a	ind sendto()
UNIT	-IV fund	ctions-UDP ec	ho client	server pr	ogram-U	JDP echo	client serve	r using sel	ect function.
(08 H	rs) Soc	ket Options: IF	v4 socke	t options-I	Pv6 soc	ket option	S	0	

	Socket Options: Generic socket options-TCP socket options. IPC: Introduction to IPC-
UNI	T-V forms of IPC-UNIX kernel support for pipes, FIFO, message queues, semaphores and
(10 I	Irs) shared memory Network programming concepts Implementation: FTP-ping-arp-SMTP-
	TELNET
TEX	FBOOKS:
1	Unix Network programming, the socket networking API, W.Richard Stevens, bill fenner, Andrew
1.	m.rudoff ,PHI.
REF	ERENCE BOOKS:
1.	Advanced programming in the UNIX environment, W.Richard Stevens ,pearson education

C	CodeCategoryLTPCI.ME.MExam								
B20A	M3108	PC			3	1.5	15	35	3 Hrs.
				1		1			
		OPE	RATING	SYSTE	MS & C	OMPILE	ER DESI	GN LAB	
	(For AIML)								
Course	Course Objectives: Students are expected								
1	The main objective of this course is to implement operating systems and compiler design								
1	concepts	5							
2	CPU scl	neduling and	l page re	placemen	t algorit	nms and a	lgorithms	related to	deadlocks
3	How to	design Auto	mata as .	Acceptor	s, Verifie	ers			
4	To study	y the various	phases i	in the des	ign of a	compiler			
5	To unde	rstand the de	esign of	top-down	, bottom	-up parse	rs		
6	To intro	duce LEX a	nd YAC	C tools					
Course	Outcom	es: At the er	nd of the	course st	udents w	ill be able	e to		
S No				Out	aama				Knowledge
5.110				Out	come				Level
1	Impleme	ent various s	chedulir	ig, page i	replacem	ent algori	thms and	algorithm	s K3
1	related to	o deadlocks							KJ
2	Develop	programs fo	or shared	memory	manage	ment and	semaphor	es	К3
3	Determi	ne predictive	e parsing	table for	a CFG				K4
4	Apply L	ex and Yacc	tools						К3
5	Build L	R parser and	generate	e SLR Pa	rsing tab	le	COLI	<u>.EGE</u>	К3
	F	Estd. 1980			AUT	<u>'ONOM</u>	<u>ous</u>		
				S	YLLAB	US			
Experi	ment 1	Simulate th	ne follow	ing CPU	scheduli	ing algorit	thms:		
Experi		(a) Rou	und Robi	n (b)	SJF	(c) FCFS	(d) P1	riority	
Experi	ment 2	Simulate the following page replacement algorithms:							
Lipon		a) FIFC)	b) LRU	-	c) LFU	J		
Experi	ment 3	Write a C	program	n that il	lustrates	two proc	cesses co	mmunicati	ng using shared
F		memory							
Experi	ment 4	Write a C I	program	to simula	ite produ	cer and co	onsumer p	roblem us	ing semaphores
Experi	ment 5	Simulate B	ankers A	lgorithm	for Dea	d Lock A	voidance		
Experi	ment 6	Write a C	program	to impl	ement D	FA for th	ne given i	regular exp	pression and test
		whether the	e given s	tring is a	ccepted of	or not			
Experi	ment 7	Write a C	Program	n to impl	ement N	FA for th	ne given i	regular exp	pression and test
1		whether the	e given s	tring is a	ccepted of	or not.			_
Experi	ment 8	Write a C I	program	to identif	y differe	nt types o	f Tokens	in a given	Program.
	6	a) key	words	b) Identif	iers, con	stants		• •	
Experi	ment 9	Write a Le	x Progra	m to imp	lement a	Lexical A	nalyzer u	sing Lex t	ool
Experi	ment 10	Write a pa	rsing pro	ogram to	test whe	ether the	given exp	ression is	having balanced
P •11		parenthesis	s or not						

Export	mont 11	Write a C program for implementation of a Shift Reduce Parser using Stack Data							
Experi		Structure to accept a given input string of a given grammar							
Experi	ment 12	Write a C program to implement a Recursive Descent Parser							
Experi	ment 13	Write C program to compute the First and Follow Sets for the given Grammar							
Experi	ment 14	Write a C program to check the validity of input string using Predictive Parser							
Experi	ment 15	Simulate the calculator using LEX and YACC tool.							
REFE	RENCE	BOOKS:							
1	Introduc	tion to Automata Theory, Languages and Computation, J. E. Hopcroft, R. Motwani							
1.	and J. D	. Ullman, 3rd Edition, Pearson, 2008.							
2	An Intro	oduction to Formal Languages and Automata, Peter Linz, 6th Edition, Jones &							
2.	Bartlett,	2016. Reference Boo							
3	Compile	ers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S.							
5.	Lam, Ra	vi Sethi, Jeffry D. Ullman, Pearson, Pearson Education India; 2nd edition, 2013							
1	Compile	er Construction-Principles and Practice, Kenneth C Louden, Cengage Learning, 2nd							
4.	Edition,	1 January 2011							
5	Modern	compiler implementation in C, Andrew W Appel, Revised edition, Cambridge							
5.	Universit	ity Press.							
6	The The	ory and Practice of Compiler writing, J. P. Tremblay and P. G. Sorenson, TMH							
7	Writing	compilers and interpreters, R. Mak, 3rd edition, Wiley student edition							
0	Operatir	ng System Concepts, Silberschatz A, Galvin P B, and Gagne G, 9th edition, Wiley,							
8 2013.									
0	Operatir	ng Systems A Concept Based Approach, Dhamdhere D M, 3rd edition, Tata							
9	⁹ McGrawHill, 2012 ENGINEERING COLLEGE								
Useful	Referen	ce Links: AUTONOMOUS							
1	https://n	ptel.ac.in/courses/106104123							
2	https://n	https://nptel.ac.in/courses/106105214							

CodeCategoryLTPCI.ME.M								Exam			
B20AM	[3109	PC			3	1.5	15	35	3 Hrs.		
			L			•		· ·			
	MACHINE LEARNING LAB										
				(For A	AIML)						
Course	Objecti	ves: Students are e	xpected								
1	1 To implement different mechanisms in preprocessing and model evaluation & implementation										
2	To im	plement different d	limensio	nality red	luction te	chniques					
3	To im	plement different c	lustering	g & classi	fication	technique	S				
4	To ev	aluate, save the mo	del								
5	To im	plement simple line	ear, logis	stic regres	ssions an	d Feed-Fe	orward N	etwork			
Course (Outcom	es: At the end of th	ne course	students	will be a	able to					
S. No				Outee					Knowledge		
5. NU				Outco	me				Level		
1	Apply	preprocessing tech	nniques c	on custon	n data set	s.			K3		
2	Apply	dimensional reduc	ction tech	nniques o	n custor	datasets			K3		
3	Devel	op, evaluate and sa	ve the di	fferent cl	lustering	& classifi	ication m	odels	K4		
4	Devel	op <mark>regression</mark> mod	lels, and	reduce the	he r <mark>egr</mark> es	ssion mod	lel c <mark>om</mark> pl	exity using	K3		
4	Lasso	and Ridge Regular	rization						K.J		
5	Devel	op neural networks	s f <mark>or stru</mark>	ctured, a	nd <mark>uns</mark> tr	actured da	ata classif	i <mark>cati</mark> on and	K3		
	regres	sion	FN	GINE	FDI		<u>ALLE</u>	GE	IN S		
		Sector Sector			UITON	OMOU					
		Esta. 1980		SYLL	ABUS	φin φφ	-				
Experim	ent 1	Data preprocessir	ng: Write	e a prog	ram to h	andle mi	ssing val	ues, bringir	ng features to		
Znperim		same scale, select	ing mear	ningful fe	atures						
Experim	ent 2	Data Preprocessing: Write a program to implement Categorical Encoding, One-hot									
P		Encoding									
Experim	ent 3	Develop a program	m to imp	lement li	near and	multiple	regression	n models.			
Experim	ent 4	Write a program to implement logistic regression for binary classification and									
1		multiclass classifi	cation								
Experim	ent 5	Write a program t	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set.								
-		Print both correct	and wro	ng predic	tions.		~ ~ 1				
Experim	ent 6	Write a program t	o implen	nent Ense	emble Le	arning, D	ata Cluste	ering & Clas	sification		
Experim	Experiment 7 Write a program to evaluate clustering model										
Experim	ent 8	Develop a progra	um to do	the foll	owing: I	Model Ev	aluation	and optimiz	ation: K-fold		
cross validation, learning and validation curves, grid search											
Experim	ent 9	Write a program t	o compre	ess data v	/1a dimer	isionality	reduction	$\frac{1}{1}$ PCA, LD	<u> </u>		
Experim	ent 10	Write a program t	to reduce	variance	e of a lin	ear regres	sion mod	el using Las	sso and Ridge		
	, 1 1	Regularization	• 1	(D		1					
Experim	ent 11	Write a program t	o implen	nent Perc	eptron fo	or digits d	ataset				
Experiment 1 Write a program to implement Feed-Forward Network for wheat seeds data						aset.					

Experime	ent 13 Build an Artificial Neural Network for regression by implementing the Back propagation algorithm and test the same using appropriate data sets.								
Experime	ent 14 Write a program to save and load a trained machine learning model								
REFER	ENCE BOOKS:								
1.	Chris Albon, "Machine Learning with Python Cookbook-practical solutions from preprocessing to Deep learning", O'REILLY Publisher, 2018								
2.	Sebastian Raschka & Vahid Mirjalili, "Python Machine Learning", Packt Publisher, 2017								
3.	Ian Good Fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017.								
4.	Francois Chollet, "Deep Learning with Python", Manning Publications, 2018.								
5	Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial								
Э.	Intelligence", Apress, 2017.								
(Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing", CRC								
0.	Press, 2018.								
7.	Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.								
8.	Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016								
Useful R	eference Links:								
1.	https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html								
2	https://towardsdatascience.com/15-data-exploration-techniques-to-go-from-data-to-								
2.	insights93f66e6805df								
2	https://medium.com/ml-research-lab/chapter-4-knowledge-from-the-data-and-data-								
з.	explorationanalysis-99a734792733								
4.	https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/								
5.	https://www.analyticsvidhya.com/blog/2016/01/guide-data-exploration/								
6.	https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb								
7	https://medium.com/nybles/create-your-first-image-recognition-classifier-using-cnn-keras-								
7.	andtensorflow-backend-6eaab98d14dd								
8.	https://analyticsindiamag.com/learn-image-classification-using-cnn-in-keras-with-code/								
9.	https://www.tensorflow.org/tutorials/images/transfer_learning								
10	https://www.pyimagesearch.com/2020/02/17/autoencoders-with-keras-tensorflow-and-								
10.	deeplearning/								
11.	https://d2l.ai/chapter_natural-language-processing-applications/sentiment-analysis-rnn.html								
12.	https://towardsdatascience.com/sentiment-analysis-using-lstm-step-by-step-50d074f0994								

Co	CodeCategoryLTPCI.ME.MExam								Exam
B20H	S3102	SOC	1		2	2		50	3Hrs.
				SOFT	SKILL	S			
		(Common t	o AIDS,	AIML,	CSBS, C	CSD, CSE	E, ECE, &	& IT)	
Course	Objectiv	ves:							
1.	To fam	iliarize students	s with sof	ft skills a	and how	they influ	uence the	eir professio	onal growth.
2	To buil	d/refine the pro	ofessional	qualitie	es/skills	necessary	for a pr	oductive ca	reer and to in
2.	still Co	nfidence throug	gh attitud	e buildii	ng.				
Cours	se Outcon	mes: At the end	d of the c	ourse sti	idents w	ill be able	e to		
S.No				Outco	ome				Knowledge
									Level
1	Apply	soft skills in	the wo	ork plac	ce and	build be	etter per	rsonal and	К3
	Professi	ional relationsh	ips maki	ng infor	med dec	ISIONS.			
	languag	ale III gloup (e effectively	accordi	ng to	the si	tuation	respond	to their	
	intervie	wer/employer	with a po	ng to sitive r	nind ma	ike answe	ers to the	e questions	
2	asked d	luring their tecl	hnical/pe	rsonal i	nterview	s. exhibit	t skills r	equired for	K3
	the diff	erent kinds of i	nterview	s (stress	, technic	al, HR) tl	hat they	would face	
	during t	the course of th	eir recrui	tment p	rocess.		, i		
	1		C DI	CINI		NIC C	- ALT	FCF	-
	3			SYL	LABUS			LOL	
1.	Introdu	ction to Soft Sk	xills, Sigr	nificance	of Inter	& Intra-	Personal	Communic	ation
2.	SWOT	Analysis, Crea	tivity & l	Problem	Solving				
3.	LSRW,	JAM, Presenta	tion Skil	ls					
4.	Buildin	g a positive atti	itude, Lea	adership	& Team	n Work			
5.	Goal Se	etting – Guideli	nes for C	loal Sett	ing				
6.	Group I	Discussion: Ess	ential gu	idelines					
7.	Telepho	one Etiquette, T	elephoni	c Interv	iew				
8.	Resume	e Preparation: C	Common	resume	blunders	, tips for	betterme	ent, Resume	Review
9	Employ	ability Skills:	Emotion	al Intelli	gence, F	Report W	riting, S	ocial Consc	iousness and
).	Social I	Entrepreneurshi	ip, Stress	Manage	ement.				
10.	Awaren	ess about Inc	lustry, C	Compani	es, Imp	ortance	of resea	arching the	prospective
	workplace, Knowing about Selection Process								
11.	Intervie	w Skills: Type	s of Inter	views, N	Aock Int	erview, I	Do's and	Don'ts of I	nterview.
Text]	Books:			~	~ `				
1	Soft Sk	tills & Employ	yability S	skills b	y Samin	a Pillai	and Agr	na Fernande	ez, Cambridge
	Univers	Sity Press India	Pvt. Ltd.	71	C		I D. 11		
2	Soft Skills, by Dr. K. Alex, S. Chand & Company Ltd., New Delhi								

Refer	ence Books:					
1	The Art of Public Speaking by Dale Carnegie					
2	The Leader in You by Dale Carnegie					
3	Emotional Intelligence by Daniel Golman					
4	Stay Hungry Stay Foolish by Rashmi Bansal					
5	I have a Dream by Rashmi Bansal.					
Additio	onal Materials					
1	https://www.youtube.com/watch?v=LTnI7cmpDZI					
2	https://www.youtube.com/watch?v=ic5O2sxhH9M					
3	https://www.youtube.com/watch?v=4ZQkYSpmOdU					
4	https://www.youtube.com/watch?v=d8p-5WcXoRs					
5	https://www.youtube.com/watch?v=yZOar04g4zk&t=94s					

(CodeCategoryLTPCI.ME.MEx									Exam
B20 N	B20MC310		MC			3				
				COMPI	ETITIV	E PROG	RAMMI	NG		
	(For AIML)									
Cours	Course Objective:									
1.	1. To learn about Stacks, Queues, Linked Lists and Templates.									
2.	Tol	earn o	different Sea	rching and	Sorting	Algorith	ms.			
Cours	Course Outcomes: At the end of the course students will be able to									
S. No					Outo	come				Knowledge
4				1.1						Level
1.	Impl	emen	t standard pr	oblems on	Matrix.					K3
2.	Solv	e vari	ous classical	l problems	on Stack	ts, Queue	s and Lin	ked Lists.		K3
3.	Appl	y sea	rching and s	orting algo	rithms of	n differei	nt data stru	ictures.		K3
4.	Solv	e the	coding tasks	with the h	elp of S'l	ľL.				K3
		<u>.</u>			•					
		Stand	lard Proble	ms on Mat	rix	. 1 (*11*				
UNIT		Matri	x forms and	representat	ions, Sp	iral fillin	g and prir	iting, Clo	ckwise and an	ti-clock wise
	1	rotatio	ons, Zig-Zag	form and	Pattern c	oding.				
		N4. 1		8/						
		Stand	ard Proble	ms on Lini	ced List	Linked 1	ict Multi	ala linka	Construct o d	ouply linked
UNIT	`-II	Finding and removing duplicates in Linked list, Multiple links, Construct a doubly linked								
		list II doubl	ulinkod list	hy n nodes	nting us	ing bubb	ie son, iv	iodulai ii		List, Kotale
		JOUDI	y mikeu iist	by II noues	•					
		Class	ical Probler	ns on Stac	ks and (Juenes				
	1	[mple	menting two	ns on stacks in	an array	v Desig	n a stack	with oper	ations on mid	dle element
UNIT	-III <u>{</u>	String	reversal usi	ing Stack.	Dueue ir	nplement	ation usin	g stack.	Dueue reverse	using queue.
		revers	sing first k el	ements of	a stack.	npremen	ation asin	g stuck, (using queue,
	5	Searc	hing and So	orting tech	niaues:					
	5	seque	ntial Vs. bi	nary searc	hing. Fi	bonacci	Search, E	xponentia	al Search,Clas	sical sorting
UNIT	-IV t	techni	iques: Sort a	an array of	strings	using se	election so	ort, Count	ting sort, Inse	rtion sort on
	(doubl	y linked list	, Quick so	rt on sin	gle Link	ed List, M	lerge sort	on Doubly lin	nked List, 3-
way Merge Sort.										
	I	•	-							
	5	Stand	lard Librar	y template	S					
UNIT]	Introd	luction to C	++ languag	ge, C++	Features	, Working	g on STL	.s, Algorithms	-Sorting and
	5	search	ning, Functio	ons, Contai	ners, Iter	ators.				
	I									

Refere	ences:
1.	Data Structures Using C by E. BalaguruSamy, First Edition, McGraw Hill Education, 2017.
2	The C -Programming Language, B.W. Kernighan, Dennis M. Ritchie, Prentice Hall India
۷.	Pvt.Ltd, Second Edition ,2015.
3	Computer Science, A structured programming approach using C, B.A.Forouzan and R.F.Gilberg,
5.	3 rd Edition, Thomson, 2013.
4	Object Oriented Programming Using C++: Alok Kumar Jagadev , Amiya Kumar Rath,
4.	Satchidananda Dehuri,PHI,2010.
E-R	esources
1.	https://www.geeksforgeeks.org/
2.	https://www.tutorialspoint.com/

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) UG Programmes CE, CSE, ECE, EEE, IT & ME are Accredited by NBA, Accredited by NAAC with A⁺ CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204

Regula	ntion: R20	II	[/ IV	- B. T	ech. Il	[- Ser	nester			
	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING									
	SCHEME OF INSTRUCTION & EXAMINATION (With effect from 2021-22 admitted Batch onwards)									
Course Code	Course Na	Catego ry	Cr	L	Т	Р	Int. Marks	Ext. Marks	Total Marks	
B20AM3201	Computer Netwo	orks	PC	3	3	0	0	30	70	100
B20AM3202	Deep Learning		PC	3	3	0	0	30	70	100
B20AM3203	Software Engine	PC	3	3	0	0	30	70	100	
#PE-II	Professional Electi	PE	3	3	0	0	30	70	100	
#OE-II	Open Elective-II		OE	3	3	0	0	30	70	100
B20AM3208	Data Visualization Using Tableau Lab		PC	1.5	0	0	3	15	35	50
B20AM3209	Algorithms for E Coding Lab	fficient	PC	1.5	0	0	3	15	35	50
B20AM3210	Deep Learning w Tensorflow Lab	vith=NG	PC	1.5	0	0	3	15	35	50
B20AM3211	MEAN Stack Technologies- M HTML, CSS, Jav Angular JS (Skill Oriented Co	SOC	2	1	0	2		50	50	
B20MC3201	Employability Skil	ls	MC	0	3	0	0			
B20HS3204	*Gender Sensitizat	ion	HS	0	2	0	0			
	TOTAL 21.5 21 0 11 195 505 700									

	Course Code	Course							
	B20AM3204	DevOps							
#PE-II	B20AM3205	Software Project Management							
	B20AM3206	Distributed Systems							
	B20AM3207	Computer Vision							
#OF II	Student has to study one Open Elective offered by CE or ECE or EEE or ME or								
#OL-II	S&H from the li	st enclosed.							

*Note: Gender Sensitization is a Self-Learning noncredit Audit Course

(Code	Category	L	Т	Р	С	I.M	E.M	Exam		
B20	AM3201	PC	3			3	30	70	3 Hrs.		
	COMPUTER NETWORKS										
	(Common to AIML & CSD)										
Cours	Course Objectives: Students are expected										
1	To study the basic taxonomy and terminology of the computer networking and enumerate the										
1	layers of OSI model and TCP/IP model.										
2	To study of	data link laye	concepts,	design i	ssues, an	d protoco	ols.				
3	To study I	MAC layer R	andom Ac	cess Prot	ocols, LA	AN.					
4	To gain k	nowledge on I	Network la	ayer and	Routing .	Algorithr	ns.				
5	To learn 7	Fransport laye	r services,	and prot	cocols.						
6	To acquir	e knowledge	of Applica	tion laye	r protoco	ls.					
Course	e Outcomes	At the end of	of the cour	se studer	nts will be	e able to					
S No				Out	como				Knowledge		
5. 110.		0		Out	come	_			Level		
1	Illustrate	the OSI refere	nce mode	I, TCP/IF	P, and Dig	gital trans	smission to	echniques	K3		
2	Demonstr	<mark>ate</mark> Data Link	Layer pro	otocols					K3		
3	Compare	and contrast M	MAC proto	o <mark>col</mark> s, vai	ious type	es <mark>of LAI</mark>	N s		K3		
4	Summariz	e various net	work <mark>laye</mark> r	· services	and Rou	iting algo	rithms		K3		
5	Implemen	t Transport la	yer and ap	plication	ı layer pr	otocols	ULLE	GE	K3		
		std. 1980			AUTOR	UMO	15				
				SYL	LABUS						
	Intro	duction: Intro	oduction t	o Comp	uter Net	works, 1	Network I	Models (pr	otocols): OSI		
UNI	Γ-I refere	reference model, TCP/IP reference model. Network topologies, types of networks (LAN,									
(10 H	(rs) MAN	MAN, WAN). Physical layer: Data and Signals, Digital signals, Digital transmission									
	(Digi	tal-to-Digital,	Analog-te	o-Digital), multipl	lexing (F	DM, TDM	1), Transmis	ssion media.		
		T ' 1 T			<u> </u>		C				
TINIT	Data	Link Layer:	Error Dete	rection &	Correction Liging he	on: types	of errors	, Error Dete Dete Link I	ection (Parity,		
(8 H)	-II CKC	ng flow cont	rol error (control F	$\frac{\text{USING II2}}{\text{Error } \& E}$	linning C Flow cont	rol mecha	Dala LIIIK L	and wait Go		
(0 11	back	N and selectiv	ve reneat	High Lev	zel Data I	Link Con	trol (HDI	(Insins. stop	and wait, 00		
	ouek		ve repeat,								
	Medi	um access co	ntrol: Rar	ndom acc	ess: Alo	ha, Slotte	ed Aloha.	CSMA. CS	SMA/CD. and		
UNIT	-III CSM	A/CA, Local	area netw	orks: Eth	ernet, Ty	pes of et	hernet (To	oken Ring,	Fast Ethernet,		
(10 H	Irs) Gigal	bit Ethernet),	Personal	Area N	etwork:	Bluetoot	h (Archite	ecture), Wi	reless LANS:		
	IEEE	802.11(Arch	itecture, M	IAC sub	layer).			·			
UNIT	-IV Netw	ork layer: N	Jetwork I	Layer Se	ervices,	IPV4 Ad	ldress, Su	ubnetting,	Super-netting,		
(8 H	rs) Class	less addressin	ng, Interne	et Protoc	ol (IP, A	RP, DH	CP, ICMF	P), IPV6 Ad	ldress format,		

	Routing algorithms: Distance vector, Link state, Network Address Translation (NAT).						
	Transport layer: UDP (User Datagram, Services, Applications), TCP (TCP Services,						
UNIT	-V features, Segment, Connection establishment and termination, sliding window, flow, and						
(8 Hı	s) congestion control), Application Layer: Application Layer services and protocols						
	including www, DNS, SMTP, POP, FTP, Telnet, HTTP, Firewalls.						
TEXT	BOOK:						
1.	Data Communication and Networking, Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2017.						
REFE	RENCE BOOKS:						
1.	Data and Computer Communications, William Stallings, Pearson, 10th Edition, 2013.						
2	Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India;						
۷.	5 th edition, 2013.						
3	Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman, 5th						
5.	Edition, 2011.						
1	Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley, 5th						
4.	lition, 2009.						

C	Code	Category	L	Т	Р	С	I.M	E.M	Exam		
B20 A	M3202	PC	3			3	30	70	3 Hrs.		
					•	•	•				
	DEEP LEARNING										
	(For AIML)										
Cours	e Objectiv	ves: Students ar	e expecte	ed							
1	Understa	nd and recollec	t basic co	oncepts of	f machine	e learning					
2	Understa	nd concepts of	deep feed	d forward	network	mechani	sms				
3	Understa	nd and analyze	the conc	epts of C	NN, RNN	I models					
4	Study the	e concepts of au	to encod	ers and o	ptimizatio	on techni	ques				
5	Study and	d analyze the di	fferent D	NN arch	itectures						
	I										
Course	e Outcom	es: At the end o	f the cou	rse stude	nts will b	e able to					
S. No				Outco	ome				Knowledge Level		
1	Demonst	rate the basic co	oncepts o	of Machir	e learnin	g			K3		
2	Apply the	e concepts of de	eep feed	forward r	networks.	0			К3		
3	Apply the	e concepts of C	NN & R	NN mode	els		7 -		К3		
4	Explain a	and Apply optin	nization	technique	s and aut	o encode	rs.		К3		
	Explain	the different I	DNN mo	dels and	Apply	that kno	wledge to	different	W0		
5	application	ons.							K3		
			EI	IGIN	EEKI	NGC	OLLE	GE			
		Estd. 1980		SYL	LABUS	IOMOL	JS				
	Fun	damentals Cor	ncepts of	Machin	e Learnii	ng					
UNIT	I-I Hist	orical Trends	in Deep	Learnin	g-Machi	ne Learr	ing Basic	s: Learnin	g Algorithms-		
(12 H	$(rs) \begin{vmatrix} Supe \\ Crase \end{vmatrix}$	Supervised and Unsupervised Training, Linear Algebra for machine Learning, Testing, Cross Validation, Dimensionality reduction, Over/Under fitting, Using, Department, and									
		validation sets Bias Variance Regularization									
	vanc	ation sets, blas	s, varian	ce, Regui	alization						
	Deer	n Feed Forwar	d Netwo	rks							
UNIT	'-II Deer	Deep feed forward networks -Introduction. Various Activation Functions error									
(10 H	rs) func	tions- Regulariz	zation for	r Deep le	arning-Ea	arly Stop	oing, Drop	out.	,		
				1	0						
TINIT	TI Con	volutional Neu	ral Netv	vorks An	d Seque	nce Mod	eling				
	Con	volutional Net	works: (Convoluti	onal oper	ation- Po	oling- No	rmalization	l,		
(10 П	Sequ	uence Modelin	g: Recur	rent Neur	al Netwo	rks, The	Long Shor	rt-Term Me	emory.		
	Auto	o Encoders and	d Optim	ization A	lgorithm	IS					
UNIT	-IV Auto	o encoders -	Auto en	coders: 1	under co	mplete, o	denoising,	optimizat	ion for Deep		
(8 Hı	rs) Lear	ning: gradient	descent	, stochas	tic gradie	ent desce	ent, mini	batch grad	dient descent,		
Adagrad, RMSProp, Adam											

	More Deep Learning Architectures & Applications								
UNIT	C-V Alexnet, ResNet, Transfer learning,								
(10 H	(rs) Deep Generative Models: Boltzmann Machines, Restricted Boltzmann Machines								
	Applications: Sentiment Analysis using LSTM, Image Segmentation								
TEXT	BOOK:								
1	Ian Good fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016								
1.	available at http://www.deeplearningbook.org)								
2	Charu C Agarwal, "Neural Networks and Deep Learning", IBM T. J. Watson Research Center,								
2.	International Business Machines, Springer, 2018								
REFE	CRENCE BOOKS:								
1.	Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012								
2	Michael Nielsen, "Neural Networks and Deep Learning", Online book, 2016								
2.	(http://neuralnetworksanddeeplearning.com/)								
3	Li Deng, Dong Yu, "Deep Learning: Methods and Applications", Foundations and Trends in								
5.	Signal Processing, 2013.								
4	Christopher and M. Bishop, "Pattern Recognition and Machine Learning", Springer Science								
	iness Media, 2006.								
5.	Jason Brownlee, "Deep Learning with Python", ebook, 2016								
6	N. D. Lewis, "Deep Learning Step by Step with Python: A Very Gentle Introduction to Deep								
0.	Neural Networks for Practical Data Science, 2016.								
7	Chris Albon, "Machine Learning with Python Cookbook-practical solutions from								
/.	preprocessing to Deep learning", O'REILLY Publisher,2018								
Usefu	Reference Links:								
1	https://medium.com/nybles/create-your-first-image-recognition-classifier-using-cnn-keras-and-								
1.	tensorflow-backend-6eaab98d14dd								
2	https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-								
۷.	scientists/								
3.	https://www.geeksforgeeks.org/cross-validation-machine-learning/								
4.	https://www.geeksforgeeks.org/activation-functions-neural-networks/								
5.	https://towardsdatascience.com/sentiment-analysis-using-lstm-step-by-step-50d074f09948								
6	https://medium.com/@lamiae.hana/a-step-by-step-guide-on-sentiment-analysis-with-rnn-and-								
6.	lstm-3a293817e314								
7.	https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23								
8.	https://d2l.ai/chapter_natural-language-processing-applications/sentiment-analysis-rnn.html								
Web I	Link:								
1.	Swayam NPTEL: Deep Learning: https://onlinecourses.nptel.ac.in/noc22_cs22/preview								
1.	Swayam NPTEL: Deep Learning: https://onlinecourses.nptel.ac.in/noc22_cs22/preview								

	Code	Category	L	Т	Р	С	I.M	E.M	Exam	
B20	AM3203	PC	3	0	0	3	30	70	3 Hrs.	
	SOFTWARE ENGINEERING									
			(Comn	non to A	IML & O	CSD)				
Cours	e Objectiv	es:								
1	Give exposure to phases of Software Development, common process models including									
1.	Waterfall,	the Unified Pro	cess, and el	lements	of the Ag	ile Proces	ss.			
2	Give expo	osure to a variet	y of Softw	are Eng	ineering	practices	such as I	Requireme	nts Analysis	
	and Speci	fication.								
3.	Give expo	sure to Software	e Design Te	echnique	s.					
4.	Give expo	sure to various S	Software Q	uality As	ssurance	and Testi	ng strateg	ies.		
Cours	e Outcome	es: At the end of	the course	Students	s will be a	able			1	
S. No				Outcom	e				Knowledge Level	
1.	Understan	d different softw	vare proces	s models	and their	r significa	ince.		K2	
2.	Distinguis	sh various requir	ements ide	ntificatio	on proced	ures.			K3	
3.	Demonstr	a <mark>te d</mark> ifferent met	hods for re	quireme	nt analysi	is modelin	ng.		K3	
4.	Illustrate	various aspects o	of system de	esign and	l softwar	e architec	tures.		K2	
5.	Apply sof	tware quality ass	surance and	l testing	strategies				K3	
		AND A	ENG	INE	ERIN	GCO	LLEG	1 E		
		Estd. 1980		SYLLA	ABUS	MOUS				
	The	Nature of Softw	vare, The	Unique	Nature o	f WebAp	ps, Softv	ware Engi	neering, The	
UNI	G-I Softv	vare Process, Se	oftware Er	ngineerin	ng Practio	ce, Softw	are Myth	ns. A Gen	eric Process	
(11 H	(rs) Mode	Model, Process Assessment and Improvement, Prescriptive Process Models,								
(Speci	Specialized Process Models, The Unified Process, Agility, Agility and the Cost of Change,								
	Agile	Process, Extrem	ne Program	nming (X	(P), Other	Agile Pr	ocess Mo	dels.		
		· · · · · · · ·				<u> </u>				
UNIT	-II Requ	irements Engli	ieering, E	stablishi	ing the	Groundy	vork, El dal Nac	liciting R	equirements,	
(8 Hı	rs) Deve	loping Use Cas	es, Duildi	irements	Analysis	ients Mo	del, Neg	ottating R	equirements,	
	v and	aning Requirement	mis, Kequ	irements	Anarysis	•				
	Scen	ario-Based Mo	deling II	ML M	odels Th	nat Supp	lement t	he Use	Case Data	
UNIT	-III Mode	ling Concepts	Class-Base	ed Mode	eling. Re	equiremer	nts Mode	ling Strat	egies Flow-	
(9 H)	rs) Orier	ted Modeling.	Creating a	Behavio	oral Mod	el. Patter	ns for Re	equiremen	ts Modeling.	
,	Requ	Requirements Modeling for Web Apps.								
			~							
TINIT	Desig	gn within the Co	ntext of So	ftware E	Ingineerii	ng, The D	esign Pro	cess, Desi	gn Concepts,	
	$ \mathbf{r}_{\mathbf{r}} $ The	Design Model,	Software	Archited	cture, Ar	chitectura	l Genres	, Archited	tural Styles,	
(13 П	Asses	ssing Alternativ	e Architec	tural De	esigns, A	rchitectur	al Mapp	ing Using	Data Flow,	

		Components, Designing Class-Based Components, Conducting Component-Level								
		Design, Component-Level Design for Web Apps, Designing Traditional Components,								
		Component- Based Development.								
	Elements of Software Quality Assurance, SQA Tasks, Goals & Metrics, Statistical SQA,									
Software Reliability, A Strategic Approach to Software Testing, Strategic Issues										
UN	T-V	Strategies for Conventional Software, Test Strategies for Object-Oriented Software, Test								
(9 F	(9Hrs) Strategies for Web Apps, Validation Testing, System Testing, The Art of Debugging,									
		Software Testing Fundamentals, Internal and External Views off Testing, White-Box								
		Testing, Basis Path Testing.								
Text	t Book	s:								
1	Softv	vare Engineering: A Practitioner's approach, Roger S Pressman, 7th edition McGraw Hill								
1.	High	er Education (2009)								
2.	Softv	vare Engineering, Ian Sommerville, 9th edition. Pearson (2017)								
Refe	erence	Books:								
1.	Softv	vare Engineering, A Precise Approach, PankajJalote, Wiley India, 2010.								
2.	Softv	vare Engineering, Ugrasen Suman, Cengage (2012)								
e-Re	sourc	es:								
1.	https:	://nptel.ac.in/courses/106/105/106105182/								

(Code	Category	L	Т	Р	С	I.M	E.M	Exam
B20	AM3204	PE	3			3	30	70	3 Hrs.
DevOps									
	(For AIML)								
Cours	Course Objectives: Students are expected to learn								
1	1 DevOps improves collaboration and productivity by automating infrastructure, workflows and continuously measuring applications performance.								
2	To learn t	he DevOps Met	hodologie	s in detail					
3	To Impler	ment CI/CD too	ls in the a	pplication					
Course	e Outcome	s: At the end of	the course	e students	will be at	ole to			
O NI				0.4					Knowledge
5. NO.				Outcom	e				Level
1	Interpret t	he principles of	continuo	us develoj	pment and	l deploym	ent, autom	nation of	КЭ
1	configurat	tion managemen	nt, inter-te	am collab	oration, a	nd IT serv	rice agility		K2
2	Illustrate	DevOps & Dev	Ops metho	odologies	and their l	key conce	pts		K3
3	Illustrate continuou	the types of y s monitoring to	version co ols, and cl	ontrol sys	stems, co els with su	ntinuous itable exa	integration mp <mark>les</mark>	1 tools,	К3
4	Implement tools	it the private in	nfrastructu	re using	version c	ontrol sys	stems and	CI/CD	К3
5	Demonstr	ate the DevOps	maturity	model.	ERIN	IG CC	DLLEG	E	К3
		Ectd 1980		1	UTON	MOUS			
				SYLL	ABUS				
	Phas	es of Software	e Develop	oment Li	fe Cycle:	SDLC,	Advantage	es & Dis	advantages of
UNIT	T-I SDL	C, Best SDLC N	/lethodolo	gy, SDLC	C Models:	Waterfal	l model, L	ean SDLO	C Model
(10 H	rs) Valu	es and princip	les of agi	le softwai	e develop	oment: Fo	our Values	of Agile	, Principles of
	Agile	e Manifesto.							
	Fund	lamentals of D	evOps: H	ow DevO	ps Differe	nt from T	raditional	IT, DevC	ps Workflow,
UNIT	-II DevO	Ops vs Agile, De	evOps Prin	nciples, D	evOps Ar	chitecture	,		
(10 H	rs) Dev(Ops Orchestra	tion: De	vOps Ap	plications	, DevOp	s Pipeline	e, Phases	s of DevOps
	Pipel	ine.							
			•						11 ~~
UNIT	-III	Ops adoption	in pro	jects: Te	chnology	aspects,	, Technol	logy Ch	allenges, CD
(10 H	$(\mathbf{rs}) \mid Auto$	mation, Ops 16	eams Pers	pective, I	ool stack	impleme	ntation, Po	eople asp	ect, Processes
	Aspe	CIS.							
TINITT		D. Introduction	on to Ca	ntinuara	Integrat	tion. W/h	u do ma	nood C	ICD minaling
UNII (10 U	$\begin{array}{c c} -1 & & U /U \\ \hline rs & Rand \\ \end{array}$	fits of CICD	ontinuous	Integratic	n tool Ac	uon: Wh	y uo we	Automati	on of CICD
(1011	15) Delle		onunuous	megratic	11 1001, A <u></u>		Pipenne, A	Sutomati	

UNI	T-V DevOps Maturity Model: Key factors of DevOps maturity model, stages of DevOps							
(10 H	Irs) maturity model, Business Benefits of DevOps Maturity, DevOps maturity Assessment							
Textb	ooks:							
	The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in							
1.	Technology Organizations, Gene Kim , John Willis , Patrick Debois , Jez Humb,1st Edition,							
	O'Reilly publications, 2016.							
2.	What is Devops? Infrastructure as code, 1st Edition, Mike Loukides, O'Reilly publications, 2012.							
Refer	ences:							
1	Effective DevOps: Building a Culture of Collaboration, Affinity, and Tooling at Scale 1st Edition,							
1.	by Jennifer Davis (Author), Ryn Daniels							
	Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment							
2.	Automation (Addison-Wesley Signature Series (Fowler)) 1st Edition by Jez Humble (Author),							
	David Farley							
Web	Links:							
1	https://infyspringboard.onwingspan.com/en/app/toc/lex_auth_013382690411003904735_shared/o							
1.	verview [Software Engineering and Agile software development]							
2	https://infyspringboard.onwingspan.com/en/viewer/html/lex_auth_01350157819497676810467							
2.	[Development & Testing with Agile: Extreme Programming]							
3	https://infyspringboard.onwingspan.com/en/viewer/html/lex_auth_01353898917192499226_shar							
5.	ed [DevOps CICD]							

(CodeCategoryLTPCI.ME.MExample									
B20	AM3205	PE	3			3	30	70	3 Hrs.	
		- I	1	1						
	SOFTWARE PROJECT MANAGEMENT									
	(For AIML)									
Cours	e Objectiv	es: Students are	expected	to learn						
1	To describe and determine the purpose and importance of project management from the									
1	perspectiv	es of planning,	tracking a	and comple	etion of pr	oject				
2	To compa	re and different	iate organ	ization str	uctures an	d project s	structures			
3	To impler	nent a project to	o manage	project sc	chedule, ex	xpenses ar	nd resource	es with the	e application	
5	of suitable	e project manage	ement too	ls						
Course	e Outcome	s: At the end of	the cours	e students	will be ab	le to				
S. No				Outcon	ne				Knowledge	
									Level	
1	Apply the	process to be f	ollowed in	n the softw	are develo	opment lif	e-cycle mo	odels.	K3	
2	Apply the	concepts of pro	oject man	agement &	z planning				K3	
3	Implemen	t the project pla	ins throug	sh mana <mark>gi</mark> r	ng people,	communi	cations and	l change	K3	
4	Conduct	activities neces	ssary to	successful	ly comple	ete and c	lose the	Software	K3	
	projects									
5	Implement software	levelopment.	on, model	ing, and c	onstructio	n & deplo	byment pra	ctices in	К3	
		Estd. 1980			UTONC	MOUS				
				SYLL	ABUS					
	Con	ventional Soft	ware M	anagemen	nt: The V	Vaterfall	Model, C	onvention	al Software	
	Man	agement Perform	mance.		<i>a</i> 0	_		. ~		
UNI	Г-I <mark>Evo</mark> l	ution Of Sof	tware E	conomics:	Software	e Econon	nics, Prag	matic So	ftware Cost	
(12 H	(rs) Estin	nation.	. Easta	mian Da	lucing Co	fterrane De	advat Cina	Turners	na Caffriana	
	Imp	roving Soltwal	re Econo	Effoctivo	noon Imp	roving A	utomotion	A objevit	ng Soltware	
		ity Peer Inspec	ig Team	Enective	ness, mip	noving A	utomation,	, Achievi	ig Kequileu	
	Quu	ity, i cer inspec	tions.							
	The	Old Way an	d The N	Jew The	principle	s of conv	ventional o	software	Engineering	
	princ	ciples of moderr	n software	e managem	ent. transi	tioning to	an iterativ	e process.	Engineering,	
UNIT	-II Life	Cycle Phases:	Engineer	ing and pro	oduction s	tages, inco	eption, Ela	boration,	construction,	
(10 H	(rs) trans	ition phases.	U	C 1		U ,	1 /	,	,	
	Arti	facts of The P	rocess: 7	The artifac	t sets, Ma	anagement	artifacts,	Engineer	ing artifacts,	
	prog	rammatic artifac	cts.							
	·									

UNIT (10 F	[-III Hrs)	 Model Based Software Architectures: A Management perspective and technical perspective. Work Flows of the Process: Software process workflows, Iteration workflows. Checkpoints of the Process: Major mile stones Minor Milestones Periodic status 							
		assessments.							
		Iterative Process Planning: Work breakdown structures, planning guidelines, cost and							
UNIT	'-IV	schedule estimating, Iteration planning process, Pragmatic planning.							
(8 H)	rs)	Project Organizations and Responsibilities: Line-of-Business Organizations, Project							
		Organizations, evolution of Organizations.							
		Process Automation: Automation Building blocks, The Project Environment.							
		Project Control and Process Instrumentation: The seven core Metrics, Management							
UNI	Г-V	indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics							
(10 H	Irs)	automation.							
		Project Estimation and Management: COCOMO model, Critical Path Analysis, PERT							
		technique, Monte Carlo approach							
TEX	LBOC	DKS:							
1.	Softw	ware Project Management, Walker Royce, Pearson Education, 2005.							
2.	Softw	vare Project Management, Bob Hughes, 4th edition, Mike Cotterell, TMH.							
REFE	EREN	CE BOOKS:							
1.	Softw	vare Project Management, Joel Henry, Pearson Education.							
2.	Softw	vare Project Management in practice, Pankaj Jalote, Pearson Education, 2005.							
3.	Effec	ctive Software Project Management, Robert K. Wysocki, Wiley, 2006.							

C	CodeCategoryLTPCI.ME.M								
B20 A	M3206	PE	3			3	30	70	3 Hrs.
	DISTRIBUTED SYSTEMS								
			(0	Common 1	to AIML	& CSD)			
Cours	e Obje	ctives: Students	are expec	ted to lea	rn				
1	To u	derstand the fou	undations	of distrib	uted syste	ms.			
2	To le	arn issues relat	ed to cloa	ck Synchi	ronization	and the	need for g	lobal state i	n distributed
2	syste	ms							
3	To le	arn distributed n	nutual exc	lusion an	d deadloc	k detection	on algorithr	ns	
4	To u	nderstand the	significan	ce of ag	greement,	fault to	lerance and	d recovery	protocols in
	Distr	buted Systems							
5	To le	arn the character	ristics of p	beer-to-pe	er and dis	stributed s	shared men	nory systems	
Course	e Outco	omes: At the end	d of the co	ourse stud	ents will l	be able to			
S. No				Outo	come				Knowledge
		<u>.</u>		0.1		_			Level
I	Elucio	late the foundati	ons and is	ssues of d	istributed	systems		1	K 2
2	Illustr	ate the various	s synchro	nization	issues an	d global	state for	distributed	K3
	syste	ns statha Mutual	Evolucion	and Daa	dlook dat	action al	orithms in	distributed	
3	syste	ns	Exclusion	and Dea				GE	К3
4	Descr syste	ibe the agreeme ns	ent protoc	ols and fa	ault tolera	ance mec	hanisms in	distributed	K3
5	Descr	ibe the features	of peer-to	-peer and	distribute	d shared	memory sy	stems	К3
				SY	LLABUS	5			
]	Distributed Sys	stems: De	finition,	Relation t	o compu	ter system	components,	Motivation,
]	Relation to para	allel syste	ms, Mess	sage-passi	ng syste	ms versus	shared mem	ory systems,
]	Primitives for d	istributed	commun	ication, S	ynchronc	ous versus a	asynchronous	s executions,
UNI	Г-І	Design issues an	d challen	ges.					
(12 H	[rs)	A model of dis	tributed	computa	tions: A	distribute	ed program	, A model o	of distributed
(~)	executions, Mod	lels of cor	nmunicat	ion netwo	orks, Gloł	oal state, Ci	uts, Past and	future cones
		of an event, Moo	lels of pro	cess com	municatio	ons.			
	Logical Time: A framework for a system of logical clocks, Scalar time, Vector								Vector time,
		Physical clock s	ynchroniz	ation: NI	Р.				
				an al-	Marri	o	and	• • •	om Meet
TINIT		viessage Order	ing & Sn	apsnots:	Message	ordering	and group	communicati	on: Message
	[r c]	Supering parad	igilis, A	synchron(Jus exec	nous ave	tom Crow	nonous con	ninumcation,
	113)	order (CO) Tot	al order	Global e	asynchife tate and	mous sys	recording	algorithms	Introduction
		100, 100		Giobal S	iaic allu	snapsnot	recording	argoritinins.	muouucuon,

		System model and definitions, Snapshot algorithms for FIFO channels.								
UNIT (10 F	F-III Irs)	 Distributed Mutex & Deadlock: Distributed mutual exclusion algorithms: Introduction – Preliminaries – Lamport's algorithm – Ricart-Agrawala algorithm – Maekawa's algorithm III – Suzuki–Kasami's broadcast algorithm. Deadlock detection in distributed systems: Introduction – System model – Preliminaries – Models of deadlocks – Knapp's classification – Algorithms for the single resource model, the AND model and the OR model. 								
UNII (8 H	ſ-IV ſrs)	Recovery & Consensus : Check pointing and rollback recovery: Introduction – Background and definitions – Issues in failure recovery – Checkpoint-based recovery – Log-based rollback recovery – Coordinated check pointing algorithm – Algorithm for asynchronous check pointing and recovery. Consensus and agreement algorithms: Problem definition – Overview of results – Agreement in a failure – free system – Agreement in synchronous systems with failures.								
 UNIT-V Peer-to-peer computing and overlay graphs: Introduction – Data indexing and overlat – Chord – Content addressable networks – Tapestry. (10 Hrs) Distributed shared memory: Abstraction and advantages – Memory consistency mode Shared memory Mutual Evaluation 										
TEXT	ГВОО									
1.	Distr Kind	ibuted Systems Concepts and Design, George Coulouris, Jean Dollimore and Tim berg, Fifth Edition, Pearson Education, 2012.								
2.	Distr Sing	ibuted computing: Principles, algorithms, and systems, Ajay D Kshemkalyani and Mukesh hal, Cambridge University Press, 2011.								
REFE	EREN	CE BOOKS:								
1.	Distr 2007	ibuted Operating Systems: Concepts and Design, Pradeep K Sinha, Prentice Hall of India,								
2.	Adva Hill,	anced concepts in operating systems. Mukesh Singhal and Niranjan G. Shivaratri, McGraw- 1994.								
3.	Distr Educ	ibuted Systems: Principles and Paradigms, Tanenbaum A.S., Van Steen M., Pearson eation, 2007.								
e-Res	ource	s:								
1.	https	://nptel.ac.in/courses/106/106/106106168/								

B20AM3207 PE 3 3 30 70 3 Hrs. COMPUTER VISION Computer vision and image features Concepts of computer vision and image features Concepts of computer vision Sometic Concepts of computer vision Sometic Concepts of computer vision K2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 Advanced CNN models for object detection K2 Apply the knowledge of GAN model and visual embeddings on image datasets K3 Advanced the knowledge of GAN model and visual embeddings on image datasets K3 Advanced the knowledge of G	(Code	Category	L	Т	Р	С	I.M	E.M	Exam		
COMPUTER VISION (For AIML) (For AIML) Course Objectives: Students are expected to learn 1 Basic concepts of computer vision and image features 2 Simple and advanced architectures of CNN 3 Concepts of transfer learning 4 DNN models for object detection 5 Concept of GAN Course Outcomes: At the end of the course students will be able to Store Outcome: At the end of the course students will be able to 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 6 Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extractin: Cholor Space—RGB color space, HSV, HSL, HSI color	B20 A	AM3207	PE	3			3	30	70	3 Hrs.		
COMPUTER VISION (For AIML) Conset Ujectives: Students are expected to learn 1 Basic concepts of computer vision and image features 3 2 Simple and advanced architectures of CNN 3 3 Concepts of transfer learning 4 4 DNN models for object detection 5 5 Concept of GAN 5 Course Outcomes: At the end of the course students will be able to S. No Monoregramme Manual Ma			•	•	•	•	•					
(For AIML) Course Objectives: Students are expected to learn 1 Basic concepts of computer vision and image features 2 Simple and advanced architectures of CNN 3 Concepts of transfer learning 4 DNN models for object detection 5 Concept of GAN Course Outcomes: At the end of the course students will be able to Students and basic concepts of computer vision K2 1 Understand basic concepts of computer vision K2 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of gayscale to reduce computation complexity, Feature extraction with its a feature in computer vision, PM and these a good (useful) feature? Extracting features (handcrafted vs. automatic extracting). Color Feature Extraction: Color Space—RGB co				(COMPUI	TER VIS	ION					
Course Objectives: Students are expected to learn 1 Basic concepts of computer vision and image features 2 Simple and advanced architectures of CNN 3 Concepts of transfer learning 4 DNN models for object detection 5 Concept of GAN Knowledge Knowledge for the end of the course students will be able to Simple and abasic concepts of computer vision K2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models for object detection K3 Simple and infiferent DNN models for object detection K2 Simple rearning on open-source image data sets K3 Apply the knowledge of GAN model and visual embeddings on image data sets K3 Apple rearning on open-source image data sets K3 Stud.1980 Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: Choor Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space Coherece vector, Color Correlogram T					(For	AIML)						
1 Basic concepts of computer vision and image features 2 Simple and advanced architectures of CNN 3 Concepts of transfer learning 4 DNN models for object detection 5 Concept of GAN Knowledge for object detection Course Outcomes: At the end of the course students will be able to S. No 0 Outcome 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: Cholor Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space (10 Hrs) Cohor Feature Extraction: Contour-Bas	Cours	e Object	ives: Students ar	e expect	ed to learn	1						
2 Simple and advanced architectures of CNN 3 Concepts of transfer learning 4 DNN models for object detection 5 Concept of GAN Knowledge of GAN Knowledge of GAN Knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification 3 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on onge datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS Computer vision, applications of computer vision? What makes a good (useful) feature? Extracting features to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction —Color Space —RGB color space, HSV, HSL, HSI color space, Y'CbCr color space (10 Hrs) Cohorence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Represe	1	Basic c	oncepts of comp	uter visi	on and ima	age featu	res					
3 Concepts of transfer learning 4 DNN models for object detection 5 Concept of GAN Course Outcomes: At the end of the course students will be able to S.No Course Outcomes: At the end of the course students will be able to S.No Course Outcomes: At the end of the course students will be able to Summer Course outcomes: At the end of the course students will be able to Summer Course Outcomes: At the end of the course students will be able to 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 6 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS Computer vision, applications of computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting). Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space <	2	Simple	and advanced ar	chitectu	res of CNN	١						
4 DNN models for object detection 5 Concept of GAN Course Outcomes: At the end of the course students will be able to 5 State Knowledge Level 1 Understand basic concepts of computer vision K2 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) Introduction to Image Classification, Image Classifycation with linear and nonlinear class	3	Concep	ts of transfer lear	rning								
5 Concept of GAN Course Outcomes: At the end of the course students will be able to S. No Outcome Knowledge Level 1 Understand basic concepts of computer vision K2 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting). Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color coherence vector, Color Correlogram Texture Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) UNIT-II (10 Hrs) Introduction to Image Classification, Image Classifycation with linear and nonlinear classifiers: Classification u	4	DNN n	odels for object	detectio	n							
Course Outcomes: At the end of the course students will be able to S. No Knowledge Level 1 Understand basic concepts of computer vision K2 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space Color Feature Extraction-Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) UNIT-II (10 Hrs) Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classi	5	Concep	t of GAN									
Course Outcome: At the end of the course students will be able to S. No Outcome Knowledge Level 1 Understand basic concepts of computer vision K2 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space UNIT-I (10 Hrs) Color Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) UNIT-II (10 Hrs) Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GooeLeNet		•										
S. No Outcome Knowledge Level 1 Understand basic concepts of computer vision K2 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS VILABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbC rolor space (10 Hrs) Color Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) UNIT-II <	Course	e Outcon	es: At the end o	f the cou	urse studer	nts will b	e able to					
Strice Level 1 Understand basic concepts of computer vision K2 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color space; ViCbC color space (10 Hrs) Color Feature Extraction: Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Contrologram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) <td cols<="" td=""><td>S No</td><td></td><td></td><th></th><th>Outcom</th><th>no</th><td></td><td></td><td></td><td>Knowledge</td></td>	<td>S No</td> <td></td> <td></td> <th></th> <th>Outcom</th> <th>no</th> <td></td> <td></td> <td></td> <td>Knowledge</td>	S No				Outcom	no				Knowledge	
1 Understand basic concepts of computer vision K2 2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extracting features (handcrafted vs. automatic extracting), Color Feature Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color space; Y'CbCr color space (10 Hrs) Color Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Clas	5.110				Outcom	lie				Level		
2 Apply the knowledge of traditional machine learning algorithms and different advanced CNN models on image datasets for classification K3 3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 6 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 7 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 8 Estd. 1980 K3 SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space UNIT-II Color Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid	1	Underst	and basic concep	ots of con	mputer vis	ion				K2		
advanced CNN models on image datasets for classification Intervent of the second s	2	Apply t	ne knowledge o	f traditic	onal machi	ine learn	ing algori	thms and d	ifferent	К3		
3 Apply transfer learning on open-source image data sets K3 4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 6 Estd. 1980 K3 SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space (10 Hrs) Introduction to Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoozLeNet		advance	d CNN models of	on image	e datasets f	for classi	fication					
4 Explain different DNN models for object detection K2 5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space (10 Hrs) Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) UNIT-II Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet	3	Apply ti	ansfer learning o	on open-	source image	age data	sets			K3		
5 Demonstrate the knowledge of GAN model and visual embeddings on image datasets K3 SYLLABUS SYLLABUS Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space (10 Hrs) Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) UNIT-II Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet	4	Explain	different DNN r	nodels fo	or object d	etection				K2		
Estd. 1980AUTOMONOUSSYLLABUSComputer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color spaceUNIT-I (10 Hrs)Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature)UNIT-II (10 Hrs)Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet	5	Demons datasets	trate the knowle	edge of	GAN moo	lel and v	visual emb	eddings on	image	K3		
SYLLABUSComputer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color spaceUNIT-I (10 Hrs)Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature)UNIT-II (10 Hrs)Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet			Estd. 1980			AUTOR	IOMOU	5				
Computer vision, applications of computer vision, Image input Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color space(10 Hrs)Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature)UNIT-II classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and GoogLeNet					SYLI	LABUS						
Converting color images to grayscale to reduce computation complexity, Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color spaceUNIT-I (10 Hrs)Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature)UNIT-II classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet		Co	mputer vision,	applicati	ions of cor	nputer vi	ision, Imag	ge input				
Feature extraction: What is a feature in computer vision? What makes a good (useful) feature? Extracting features (handcrafted vs. automatic extracting), Color Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color spaces, Y'CbCr color spaceUNIT-Icolor Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature)UNIT-IIIntroduction to Image Classification, Image Classification with linear and nonlinear color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet		Co	Converting color images to grayscale to reduce computation complexity,									
Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and GoogLeNet (10 Hrs)		Fe	Feature extraction : What is a feature in computer vision? What makes a good (useful)									
UNIT-IColor Feature Extraction: Color Space—RGB color space, HSV, HSL, HSI color(10 Hrs)Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature)UNIT-IIIntroduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet		Tea Ca	Color Footure Extracting reatures (nandcrafted vs. automatic extracting),									
(10 Hrs) Color Feature Extraction—Color Histogram (component, Indexed, Dominant), Color Coherence vector, Color Correlogram Texture Feature Extraction: Spatial Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet	LINIT		spaces V'ChCr color space									
 (10 IIIs) Color Federate Extraction Color Instogram (component, indexed, Bohman, Color Correlogram Coherence vector, Color Correlogram Texture Feature Extraction Methods (Gray Level Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet 	(10 H	irs) Co	Color Feature Extraction—Color Histogram (component Indexed Dominant) Color									
Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet			Coherence vector. Color Correlogram									
Co-occurrence matrices, Markov random Field) Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet		Te	Texture Feature Extraction : Spatial Texture Feature Extraction Methods (Grav Leve									
Shape Representation: Contour-Based Shape Methods (Centroid Distance, Curvature Signature) Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet		Co	-occurrence mat	rices, M	arkov rand	lom Field	d)			× 2		
Signature) UNIT-II Introduction to Image Classification, Image Classification with linear and nonlinear classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet		Sh	ape Representa	ation: C	ontour-Ba	sed Shap	be Method	ls (Centroid	d Distan	ce, Curvature		
UNIT-IIIntroduction to Image Classification, Image Classification with linear and nonlinear(10 Hrs)classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet		Signature)										
UNIT-IIIntroduction to Image Classification, Image Classification with linear and nonlinearUNIT-IIclassifiers: Classification using SVM and Decision Trees, Classifying Gray scale and color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet												
 UNIT-II classifiers: Classification using SVM and Decision Trees, Classifying Gray scale and (10 Hrs) color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet 		In	roduction to In	nage Cla	assificatio	n, Imag	e Classific	ation with	linear a	nd nonlinear		
(10 Hrs) color images using CNNs, Advanced CNN architectures: LeNet-5, Inception and GoogLeNet	UNIT	C-II cla	ssifiers: Classif	ication	using SVN	M and D	ecision T	rees, Classi	fying G	ray scale and		
	(10 H	$(\mathbf{rs}) \mid \operatorname{col}_{Ge}$	or images usir ogLeNet	ng CNN	ls, Advan	ced CN	N archite	ctures: Le	Net-5, I	nception and		

UNI' (10]	Transfer Learning: What problems does transfer learning solve, what is transfer learning, Transfer learning approaches, Choosing the appropriate level of transfer learning, Open source datasets						
UNI (10]	IT-IV Hrs)Object Detection with R-CNN, SSD and YOLO: General object detection framework, Region-based convolutional neural networks (R-CNNs), Single-shot detector (SSD), You only look once (YOLO)						
UNIT-V (10 Hrs)Generative Adversarial networks: GAN architecture, Evaluating GAN models, GAN applications, Visual embeddi its applications							
TEX	TBOOK	S:					
1.	Deep L	earning for Vision Systems: Mohamed Elgendy, Manning Publishers, 2020					
2	Fundan	nentals of Image Data Mining: Dengsheng Zhang, 2 nd Edition, Springer					
REF	ERENC	E BOOKS:					
1.	Computer Vision: Models, Learning, and Inference, Somon J.D. Prince, 1 st Edition, Cambridge University Press						
Online MOOC Courses:							
1.	Introdu Image I	ction to Computer Vision and Image Processing, <u>Introduction to Computer Vision and</u> Processing Coursera, Courseera					
2.	Deep 1 (nptel.a	Learning for Computer Vision, <u>Deep Learning for Computer Vision - Course</u> <u>c.in</u>), Prof. Vineeth N. Balasubramanian					

Code		Category	L	Т	Р	С	I.M	E.M	Exam		
B20AM3208		РС	0	0	3	1.5	15	35	3 Hrs.		
	DATA VISUALIZATION USING TABLEAU LAB										
	(For AIML)										
Course	Object	t ives : The stud	ents able t	10	,						
1	1 Understand basic concepts of Tableau										
2	Unders	Understand the main concepts of visual analytics with a hands-on tutorial using Tableau									
3	Unders	tand how to cr	eate effec	tive charts	s and inter	active day	shboards	8			
Course	Outcon	nes: At the end	l of the co	urse stude	ents will b	e able to					
						• 4010 10			Knowledge		
S. No				Oute	come				Level		
1	Apply	the main cond	cepts of da	ata visuali	zation				K3		
2	Devel	op basic and a	dvanced c	harts usin	g Tableau	Desktop			K4		
3	Devel	op and build th	ne dashboa	ards		1			K4		
		·				_					
		A COLOR		SY	LLABUS		7 -				
	Exerc	ise1:						_			
	Introdu	uction to Table	au								
	• Cour										
1.	• Getti										
	• Conr	Connecting to the tutorial dataset AUTONOMOUS									
	• Table										
	• Creat	ting the first ch	arts								
	T	• •									
	Exerc	ise2:									
2	Conne	Connecting to Data sources									
2.	• Fxc										
	Access Database										
	Exerc	ise3:									
	Creatin	ng Basic charts	and grap	hs							
2	• Cre	Creating a Pie Chart									
3.	• Cre	• Creating a Bar Chart									
	• Cre										
	Discovering Scatter Plot										
4.	Exerc	ise 4:									
	Data N	Aanagement									

	Filter the data using Context filter								
	Implement Sorting								
	Grouping of data								
	Manipulating sets								
	Working with Dates(Discrete and Continuous)								
	Exercise 5:								
5.	Table Calculations								
	• Creating simple calculations in Tableau								
	Using table calculations								
	Exercise 6:								
	Advanced Charts								
	Dual Axis Chart								
	Heat Map								
0.	• Tree Map								
	• Box Plot								
	Waterfall Chart								
	Level of Details (LOD)								
	Exercise 7:								
7.	Dashboards								
	Building an Interactive Dashboard								
	IBOOKS: Esta 1980 AUTONOMOUS								
1.	Visualization Analysis & Design by Tamara Munzner (2014) (ISBN 9781466508910)								
2.	Tableau Your Data!, Daniel G. Murray, John Wiley & Sons, Inc., Second edition, 2016								
KEF.	ERENCE BOOKS:								
1.	st Edition Kindle Edition								
	Molly Monsey and Paul Sochan, Tableau for Dummies (For Dummies (Computer/Tech))								
2.	Publisher: For Dummies								
3.	Interactive Data Visualization for the Web by Scott Murray 2nd Edition (2017)								
4	Shweta Sankhe-Savale, Tableau Cookbook – Recipes for Data Visualization								
Usef	ul Reference Links:								
1.	https://www.educba.com/tableau-visualization/								
2.	https://www.tableau.com/learn/articles/data-visualization								
3.	https://towardsdatascience.com/tableau-visualizations-dc9e544dc9a8								
4.	https://wmich.edu/sites/default/files/attachments/u1158/2019/Tableau%20WMU_2.pdf								
5	https://programmer-books.com/wp-content/uploads/2019/10/Creating-Data-Stories-with-								
5.	Tableau-Public.pdf								

Code Category L T P C I.M	E.M	Exam						
B20AM3209 PC 0 0 3 1.5 15	35	3 Hrs.						
ALGORITHMS FOR EFFICIENT CODING LA	B							
(Common to AIML & CSD)								
Course Objective:								
1. To develop efficient coding for implementing advanced trees and algor	ithms with v	arious inputs.						
Course Outcomes: At the end of the course Students will be able to								
S. No Outcome	. No Outcome							
	11.00	Level						
1. Develop programs to find optimal solutions for various problems using	ng different	K3						
Analyze time complexity of various algorithm design techniques		K 4						
2. Analyze time complexity of various algorithm design techniques	laguithma	K4						
5. Develop programs to implement advanced trees and pattern matching a	ugorunms	K3						
List of Experiments:								
Implement and analyze the following Algorithms using Divide and Conquer								
1. Binary Search								
2. Merge Sort								
3. Quick Sort								
Implement following Algorithms using Greedy Method	C.C.							
4. Minimum-cost spanning tree	UC.							
5. Single Source Shortest Path (Dijkstra's)								
Implement following Algorithms using Dynamic programing								
6. Optimal binary search trees								
7. Traveling salesperson problem								
Implement following Algorithms using Backtracking								
8. N-Queens problem								
9. Graph Coloring problem								
Implement following Tree Operations								
10. AVL Tree								
11. Splay Tree								
Implement following Pattern Matching Algorithms.								
12. KIVIP Algorithm								
13. KK Algorithm								
TEVTDOOKS								
ILAIDUURS:	Jorowitz 0	artai Cahn: C						
1. Fundamentals of Computer Algorithms 2nd edition by Ellis F Paiasekharan university press 2008	norowitz, S	anajoanni, S.						
2 Advanced Data Structures – Peter Brass Cambridge University Press	2008							

2. Advanced Data Structures – Peter Brass, Cambridge University Press, 2008

B20AM3210 PC 3 1.5 15 35 3 Hrs DEEP LEARNING WITH TENSORFLOW LAB (For AIML) Pre-requisites: Machine Learning, Machine Learning Lab	•								
DEEP LEARNING WITH TENSORFLOW LAB (For AIML) Pre-requisites: Machine Learning, Machine Learning Lab									
DEEP LEARNING WITH TENSORFLOW LAB (For AIML) Pre-requisites: Machine Learning, Machine Learning Lab									
(For AIML) Pre-requisites: Machine Learning, Machine Learning Lab									
Pre-requisites: Machine Learning, Machine Learning Lab									
Software Packages Required:									
• Keras									
• Tensorflow									
• PyTorch									
Course Objectives: Students are expected to learn									
1 To implement different deep learning models in Python									
2 To work with different deep learning frameworks like Keras, Tensor flow, PyTorch etc.									
Course Outcomes: At the end of the course students will be able to									
S No Outcome Knowl	dge								
S. No. Outcome Lev	l								
Apply data pre-processing techniques on different types of datasets to make them									
suitable for developing deep learning models									
2 Construct neural network models for solving classification and regression tasks K3									
3 Implement Convolutional Neural Network for classification and object									
detection ENGINEERING COLLEGE									
4 Use pretrained models AUTONOMOUS K3									
5 Implement Recurrent Neural Network for text classification and language									
translation									
SYLLABUS									
Experiment 1 Implement multilayer perceptron algorithm for MNIST Handwritten D	git								
Experiment 2 Implement one hot encoding of words or characters.									
Experiment 3: Apply data augmentation techniques on images.									
Experiment 4 Implement word embeddings for IMDB dataset.									
Design a neural network for classifying movie reviews (Binary Classificati	n)								
using IMDB dataset.	,								
Experiment 6 Design a neural Network for classifying news wires (Multi class classificati	m)								
using Reutersdataset.	ico								
Experiment 7 dataset.	Design a neural network for predicting house prices using Boston Housing Price								
Experiment 8 Build a Convolution Neural Network for MNIST Hand written D	git								
Classification.	-								
Build a Convolution Neural Network for simple image (dogs and Ca	ts)								
performance of CNN.	ne								

Exper	riment 10	Use a pre-trained convolution neural network (VGG16) for image classification					
Experiment 11		Implement a Recurrent Neural Network for IMDB movie review classification problem.					
Additional Programs (For Practice only)							
Exper	riment 1	Implement a deep learning model for object detection					
Exper	riment 2	Develop an autoencoder model for MNIST dataset					
Exper	riment 3	Implement LSTM for language translation					
REF	ERENCE	BOOKS:					
1.	Chris A preproc	Albon, "Machine Learning with Python Cookbook-practical solutions from essing to Deep learning", O'REILLY Publisher,2018					
2.	Sebastia	n Raschka & Vahid Mirjalili, "Python Machine Learning", Packt Publisher, 2017					
3.	Ian Goo	d Fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017.					
4.	Francois	s Chollet, "Deep Learning with Python", Manning Publications, 2018.					
5.	5. Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing", CRC Press, 2018.						
6.	Navin K	umar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.					
Usefu	ll Referen	ace Links:					
1.	https://sc	ikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html					
2	https://to	wardsdatascience.com/15-data-exploration-techniques-to-go-from-data-to-					
2.	insights9	<u>V3f66e6805df</u>					
3.	https://medium.com/ml-research-lab/chapter-4-knowledge-from-the-data-and-data- explorationanalysis-99a734792733						
4.	https://m	achinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/					
5.	https://w	ww.analyticsvidhya.com/blog/2016/01/guide-data-exploration/					
6.	https://to	wardsdatascience.com/wtf-is-image-classification-8e78a8235acb					
7	https://m	edium.com/nybles/create-your-first-image-recognition-classifier-using-cnn-keras-					
1.	7. <u>andtensorflow-backend-6eaab98d14dd</u>						
8.	https://analyticsindiamag.com/learn-image-classification-using-cnn-in-keras-with-code/						
9.	https://w	ww.tensorflow.org/tutorials/images/transfer_learning					
10.	https://w	ww.pyimagesearch.com/2020/02/17/autoencoders-with-keras-tensorflow-and- ning/					
11.	https://d/	21.ai/chapter_natural-language-processing-applications/sentiment-analysis-rnn.html					
12.	https://to	wardsdatascience.com/sentiment-analysis-using-lstm-step-by-step-50d074f0994					

Code		Category	L	Т	Р	C	I.M	E.M	Exam
B20AM3211		SOC	1		2	2		50	3 Hrs.
	MEAN STACK TECHNOLOGIES-MODULE I								
	(For AIML)								
Cours	e Object	tives: Students	are exp	ected to	o learn				
1	The con	re concepts of f	rontenc	l and dy	ynamic, 1	responsiv	e developi	ment for web a	applications.
Cours	e Outco	mes: At the end	d of the	course	students	will be a	able to		
				0					Knowledge
S. No				Ou	tcome				Level
1	Develo	p static web pa	ges usi	ng HTN	/IL & CS	S elemer	nts		K3
2	Develop dynamic web pages and validate them using JavaScript K3						K3		
3	Develop dynamic and responsive web pages using Angular JS K3								
									•

LIST OF EXPERIMENTS

HTML 5:

Introduction to Web, Overview of Web Technologies, HTML - Introduction, HTML - Need, Platform-independency, DOCTYPE Declaration, Types of Elements, HTML Elements – Attributes, Paragraph Element, Division and Span Elements, List Element, Link Element, Character Entities, HTML5 Global Attributes, Creating Table Elements, Table Elements : Colspan/Rowspan Attributes, border, cellspacing and cellpadding attributes, Creating Form Elements, Input Elements - Attributes, Color and Date Pickers, Select and Data list Elements, Editing Elements, Media.

CSS:

Introduction CSS, Applying CSS to HTML, Selectors, Properties and Values, CSS Colors and Backgrounds, CSS Box Model, CSS Margins, Padding, and Borders, CSS Text and Font Properties.

JAVASCRIPT:

Why we need JavaScript, What is JavaScript, Environment Setup, Working with Identifiers, Type of Identifiers, Primitive and Non Primitive Data Types, Operators and Types of Operators, Types of Statements, Non - Conditional Statements, Types of Conditional Statements, If and Switch Statements, Types of Loops, Types of Functions, Declaring and Invoking Function, Arrow Function, Function Parameters, Nested Function, Built-in Functions, Variable Scope in Functions, Working With Classes, Creating and Inheriting Classes, In-built Events and Handlers, Working with Objects, Types of Objects, Creating Objects, Combining and cloning Objects using Spread operator, Destructuring Objects, Browser and Document Object Model, Creating Arrays, Array Methods.

ANGULAR JS:

What is Angular, Features of angular, Angular Application Setup, architecture of angular, creating components, built-in pipes, Components and Modules, Elements of Template, creating a simple angular application, Executing Angular Application.

TEXT	BOOKS:
1.	Programming the World Wide Web, 8th Edition Robet W Sebesta, Pearson, 2015.
2	WebTechnologies,1st Edition 7th impression, Uttam K Roy, Oxford, 2012.
3	Full Stack JavaScript Development with MEAN, Colin J Ihrig, Adam Bretz, 1st edition, SitePoint, SitePoint Pty. Ltd., O'Reilly Media.
REFE	RENCE BOOKS:
1.	Getting MEAN with Mongo, Express, Angular, And Node, Simon Holmes Clive Harber, Manning
2.	An Introduction to Web Design, Programming, 1st Edition, Paul S Wang, Sanda SKatila, Cengage Learning.
WEB I	LINKS:
1	https://infyspringboard.onwingspan.com/en/app/toc/lex_17739732834840810000_shared/ove rview (HTML 5)
2	https://infyspringboard.onwingspan.com/en/app/toc/lex_18109698366332810000_shared/ove rview_(JavaScript)
3	https://infyspringboard.onwingspan.com/en/app/toc/lex_20858515543254600000_shared/ove rview_(Angular JS)

Code			Category	L	Т	Р	С	I.M	E.M	Exam
B20MC320		201	MC	3						3 Hrs.
				EM	PLOY	ABILIT	Y SKILL	ν S		
	(Common to AIDS, CSBS, CSD, CSE, ECE & IT)									
]	Part-A:	Verbal	Ability			
Co	Course Objectives:									
1	To i	ntrodu	ice concepts r	equired	in fram	ning gran	nmaticall	y correct	sentences an	nd identifying
1.	error	rs Wh	ile using Stand	dard En	glish.					
2.	To 1	famili	arize the lear	ner wit	h high	frequen	cy words	as they	would be	used in their
	prof	ession	al career.	1		<u> </u>	1 1			
3.	To 1	nculca	ate logical thin	$\frac{1}{1}$	order to	$\frac{1}{1}$ frame a	$\frac{1}{1}$ nd use da	$\frac{1}{\cdot}$ ta as per	the requirem	ient
4.	com	acquai posin	nt the learner g a written dis	of mal	a c	coherent	and cohe	sive sen	tences and p	aragraphs for
5.	To f	amilia	rize students v	with sof	t skills a	and how	it influen	ces their	professional	grow.
Co	urse O	utcon	nes: The stude	nts will	be able	to				
	S.No	1	dillion .		0	utcome				Knowledge
	0.110	10	Next			utcome				Level
		Dete	ect grammatic	al error	s in the	text/sen	tences an	d rectify	them while	
	I	ansv	vering their	compe	etitive/c	ompany	specific	tests	and frame	K3
		grammatically Correct sentences while writing.								
	2	Exer	cises while at	on syn temptin	onyms, g CAT,	GRE, G	ATE and	other rel	ated tests.	K3
	3	Use	their logical the	hinking	ability	and solv	e question	ns related	d to analogy,	К3
	5	Syll	115							
	4	Choose the appropriate word/s/phrases suitable to the given context in								K3
		order to make the sentence/paragraph coherent.								
					01	71 1 4 10 1	IC			
TTN		C	uin a Dan C	1	<u>5)</u>		3			
UN	11-1	Spo	buing Errors, S	sentence	e Impro	vement				
		C	onuma Anta	numa	Fraguer	thy Com	Fund W	rde Eer	nian Dhanna	Idioma and
UN	IT-II	Dh	ionyms, Anto	nyms, 1 Mocativ	riequei	itry Con	used we	nus, foi	eign Fillases	s, futottis allu
		1 111		mocan	ліз.					
UNIT-III Foreign Phrases Idioms and Phrasal Verbs Collocations Analogies Odd						ld One Out				
			<u>5</u>			ubui 701	.5, 201100			
UN	T-IV	Ser	ntence complet	ion Se	ntence F	Equivaler	nce. Close	e Test		
			tenee complet				, 01050			
UN	IT-V	Re	ading Compre	hension	Para I	imbles				
	*		compre		, - 414 30					
1										

Text Book	<s:< th=""></s:<>
1.	Oxford Learners,, Grammar–Finder by John Eastwood, Oxford Publication.
2.	RS Agarwal books on objective English and verbal reasoning
3.	English Vocabulary in Use-Advanced, Cambridge University Press
4.	Collocations In Use, Cambridge University Press
5	Soft Skills & Employability Skills by Samina Pillai and Agna Fernandez, Cambridge
5.	University Press India Pvt .Ltd.
6.	Soft Skills, by Dr.K.Alex, S. Chand & Company Ltd., New Delhi
Reference	Books:
1.	English Grammar in Use by Raymond Murphy, CUP
2.	Websites: Indiabix,800score, official CAT, GRE and GMAT sites
3.	Material from IMS, Career Launcher and Time institutes for competitive exams
4.	The Art of Public Speaking by Dale Carnegie
5.	The Leader in You by Dale Carnegie
6.	Emotional Intelligence by Daniel Golman
7.	Stay Hungry Stay Foolish by Rashmi Bansal
8.	I have a Dream by Rashmi Bansal.
	2201112755

Part-B: Quantitative Aptitude-I

Course O	bjectives:					
1.	To familiarize students with basic problems on numbers and ratios problems.					
2.	To enrich the skills of solving problems on time, work, speed, distance and also					
	Measurement of units.					
3.	To enable the students to work efficiently on percentage values related to shares,					
	profit and Loss problems.					
4.	To inculcate logical thinking by exposing the students to reasoning related questions.					
5.	To inculcate logical thinking by exposing the students to reasoning related questions.					

Course Outcomes: At the end of the course Students will be able to

S.No.	Course Outcome	Knowledge Level
1.	Perform well in calculating on number problems and various units of ratio concepts	K3
2.	Solve problems on time and distance and units related solutions	K3
3.	Adept in solving problems related to profit and loss, in specific, quantitative ability	К3
4.	Present themselves well in the recruitment process using analytical and logical skills which he or she developed during the course as they are very important for any person to be placed in the industry	K3

5	Apply Logical thinking to the problems of Syllogisms and be able to effectively attempt competitive examinations like CAT GRE GATE	К3				
5.	for further studies	K5				
	SYLLABUS					
UNIT-I	Numbers, LCM and HCF, Chain Rule, Ratio and Proportion Importance of different types of numbers and uses of them: Divisibility tests, finding remainders in various cases, Problems related to numbers, Methods to find LCM, Methods to find HCF, applications of LCM, HCF. Importance of chain rule, Problems on chain rule, Introducing the concept of ratio in three Different methods, Problems related to Ratio and Proportion					
UNIT-II	 Time and work, Time and Distance Problems on manpower and time related to work, Problems on alternate days, Problems on hours of working related to clock, Problems on pipes and cistern, Problems on combination of the some or all the above, Introduction of time and distance, Problems on average speed, Problems on Relative speed, Problems on trains, Problems on boats and streams, Problems on circular tracks, Problems on polygonal tracks, Problems on races. 					
UNIT-III	Percentages, Profit Loss and Discount, Simple interest, Compound Interest, Partnerships, shares and dividends. Problems on percentages-Understanding of cost price, selling price, marked price, discount, percentage of profit, percentage of loss, percentage of discount, Problems on cost price, selling price, market price, discount. Introduction of simple interest, Introduction of compound interest, Relation between simple interest and compound interest, Introduction of partnership, Sleeping partner concept and problems, Problems on shares and dividends, and stocks.					
	Introduction number series number analogy classification. Latter ser	ing nonlying				
UNIT-IV	directions Problems of how to find the next number in the series, Finding number and related sums, Analogy, Sums related to number analogy, alphabet, Sums related to Classification, Sums related to letter seri between number series and letter series, Usage of directions north, south Problems related to directions north, south, east, west.	the missing Ranking of es, Relation n, east, west,				
UNIT-V	Data sufficiency, Syllogisms Easy sums to understand data sufficience mistakes while doing data sufficiency, Syllogisms Problems.	cy, Frequent				
Text Book	۲S:					
1.	Quantitative aptitude by RS Agarwal					
2.	Verbal and nonverbal reasoning by RS Agarwal					
3.	Puzzles to puzzle vou by shakunatala devi.					

References:				
1.	Barrons by Sharon Welner Green and IraK Wolf (Galgotia Publications pvt. Ltd.)			
2.	Websites: m4maths, Indiabix, 800score, official CAT, GRE and GMAT sites			
3.	Material from IMS, Career Launcher and Time,, institutes for competitive exams			
4.	Books for CAT by Arun sharma.			
5.	Elementary and Higher algebra by HS Hall and SR Knight.			
Websites:				
1.	www.m4maths.com			
2.	www.Indiabix.com			
3.	www.800score.com			
4.	Official GRE site			
5.	Official GMAT site			

Code		Category	L	Т	Р	С	I.M	E.M	Exam
B20HS3204		HS	2						
			GEN	NDER S	ENSITI	ZATION			
~			(Co	ommon t	O ALL B	ranches)			
Cour	se Obj	ectives:		••		2			.
1.	To dev	elop students' s	ensibility v	with rega	ard to iss	ues of gen	der in co	ontemporary	India.
2.	To pro	To provide a critical perspective on the socialization of men and women.							
<i>3</i> .	To introduce students to information about some key biological aspects of genders.								
4. 5	To help students reflect critically on gender violence and workplace security.								
5.	TUEX		inore egan			s between		i women.	
Cour	se Out	comes . At the er	nd of the co	ourse st	udents w	ill be able	to		
Cour				<i>, 50</i>			10		Knowledge
S.No				Outco	ome				Level
1.	Under	stand the impor	tant issues	relating	to gende	r in conte	mporary	India.	K2
2.	Get	sensitized to	basic dir	nension	s of th	ne biolog	gical, so	ociological,	К2
	psych	ological and leg	al aspects of	of gende	er.				
3.	Attain a finer grasp of how gender discrimination works in our society and K2								
4	Acqui	re insight into the	he gendere	d divisio	on of lab	our and it	s relation	to politics	
4.	and ed	conomics.	U					1	K 2
5.	5. Develop a sense of appreciation for both men and women in all walks of life. K3							К3	
		Estd. 1980			AUTO	NOMO	US		
				SY	LLABUS	5			
Understanding Gender and Related Concepts - Gender in Everyday Life						ife			
TINT		Introduction: Conceptual Connotation – Sex and Gender – Basic Gender Concepts -							
UNI	1-1	Gendered Socialization – Gender Stereotypes –Exploring Attitudes towards Gender –							
		Genuer Koles & Kelationsnips - Myths – Gender in Indian society – Early days – Later Vedic Period Medieval and British Period Independent India							
	vedic Period –iviedieval and British Period – Independent India.								
Introduction to Conder Justice, Notion and Significance									
]	Division and Valuation of Work – Housework- The Invisible Work - "Mv Mother							
UNI	T-II	-II doesn't work," - Offences against Women –Fact and Fiction - Status of Women in							
		Society – Gender and Human Rights - Gender Equality – Gender Justice – Notion and							
		Significance							
	·								
	International and Constitutional Perspectives on Gender Equality								
UNI	IT-III The International Bill of Rights, 1979 –Declaration on the Elimination of Violen against women 1993 –The Rights of Women –Beijing Platform for Action 1995						n of Violence		
							ction 1995 –		
Constitutional Guarantees – Fundamental Rights – Equality.									

		Gender and Culture				
UNIT-	T T T 7	Gender and Film - Gender and Electronic Media – Gender and Advertisement – Gender				
	L -1 V	and Popular Literature - Gender Issues - Gender-Sensitive Behaviour - Gender being				
		Together as Equals.				
		Gender Violence- Within and Beyond				
UNIT	гу	Violence – Gender Violence – Types of Gender Violence –Gender Violence in Indian				
UNI	1-1	Perspective – -Women Specific Legislations for the Elimination of Violence Within and				
		Beyond.				
Refer	ence	Books:				
	"Tov	wards A World Of Equals: A Bilingual Textbook on Gender" by A. Suneetha, Uma				
1.	Bhru	ugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu				
	Shya	amala, Deepa Sreenivas, and Susie Tharu, Published by Telugu Akademi (2015).				
2	Ferb	er, Holcomb & Wentling, Sex, Gender & Sexuality: The New Basics, Oxford Univ.				
۷.	Pres	s 2008.				
2	Flav	ia Agnes, Sudhir Chandra, Monmayee Basu, Women and Law in India, Oxford Univ.				
5.	Pres	s 2004.				
4.	Mamta Rao, Law Relating to Women and Children, Eastern Book Co, Lucknow.					
5.	K.I. Vibhute, Criminal Law, Lexis Nexis, 12th Edn.					
6.	N. Prabha Unnithan (ed.), Crime & Justice in India, Sage Pub., 2013.					
7.	Ritu Gupta, Sexual Harassment at Workplace, Lexis Nexis, 2013.					
8	IGN	OU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi				
0.	IGN	OU.				
		ENGINEERING COLLEGE				
Web	links:	Estd 1980 AUTONOMOUS				
1.	https	s://nptel.ac.in/courses/110105080				
2.	https://www.youtube.com/watch?v=2Xfp2eiTte0					
3.	https	s://www.youtube.com/watch?v=-FCEBe5VNcA&t=41s				
4.	https://www.youtube.com/watch?v=7n9IOH0NvyY					
5.	https	s://www.youtube.com/watch?v=dpC2jGqu4G0				
6.	https://www.youtube.com/watch?v=kcW4ABcY3zI&t=99s					
7.	https://www.youtube.com/watch?v=dlXw1PbnWKM					
8.	https	s://www.youtube.com/watch?v=9bayaZ18_po				
9.	https://www.youtube.com/watch?v=ZbLq23cGFV4&t=1662s					
10.	https://www.youtube.com/watch?v=61aYvb0Vo68					
11.	https://www.youtube.com/watch?v=728H4Khf7Gk&t=1793s					
12.	https://www.youtube.com/watch?v=y2Yk-rSZ7PI					
13.	https	s://www.youtube.com/watch?v=wSqFvcjDpos				
14.	https://www.youtube.com/watch?v=AljDd7nj9wE					
15.	https://www.youtube.com/watch?v=MKPM0f2fOjM					