

		UNIT-IV	5	3	7
7.	a)	Obtain the directional derivative of $\varphi=x y+y z+z x$ at A in the direction of AB where $A=(1,2,-1), B=(5,6,8)$.			
	b)	Determine the values of a and b such that the surface $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ cut orthogonally at $(1,-1,2)$.	5	3	7
		OR			
8.	a)	Show that the vector $\left(x^{2}-y z\right) \bar{\imath}+\left(y^{2}-z x\right) \bar{\jmath}+\left(z^{2}-x y\right) \bar{k}$ is irrotational and find its scalar potential.	5	3	7
	b)	Determine Curl \bar{F} anddiv \bar{F} for $\bar{F}=x^{2} y \bar{I}-2 x z \bar{J}+2 y z \bar{K}$	5	3	7
		UNIT-V			
9.	a)	Determine the work done in moving a particle once round the circle $x^{2}+y^{2}=9$ in the xy-plane by the force $\bar{F}=(2 x-y-z) \bar{\imath}+\left(x+y-z^{2}\right) \bar{\jmath}+(3 x-2 y+4 z) \bar{k}$	6	3	7
	b)	Evaluate the line integral by Stokes's theorem for the vector function $\bar{F}=y^{2} \bar{\imath}+x^{2} \bar{\jmath}+(z+x) \bar{k}$ and C is the triangle with vertices $(0,0,0),(1,0,0)$ and (1,1,0).	6	3	7
		OR			
10.		Verify Green's theorem in the plane For $\oint_{C}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$, where C is boundary of the region defined by $y=\sqrt{x}, y=x^{2}$	6	3	14

CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

		such that $(x, y) R(u, v)$ if and only if $x v=y u$. Then establish that ' R ' is an equivalence relation.			
	b)	Define Hasse diagram. Draw the Hasse diagram for the Poset $(P(S), \subseteq)$ where $S=\{1,2,3\}$	3	3	7
		OR			
6.	a)	Establish that a Lattice ' L ' is distributive iff $\forall x, y, z \in L(x * y) \oplus(y * z) \oplus(z * x) \equiv(x \oplus y) *(y \oplus z) *(z \oplus x)$	4	3	7
	b)	Consider the Boolean polynomial $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x} *\left(\mathrm{y} \oplus \mathrm{z}^{\prime}\right)$. If $\mathrm{B}=\{0,1\}$, compute the truth table of the function $f: B_{3} \rightarrow B$ defined by p. Also draw logical diagram.	4	3	7
		UNIT-IV			
7.	a)	Determine the number of integral solutions for the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20$ where $x_{1} \geq 3, x_{2} \geq 2, x_{3} \geq 4, x_{4} \geq 6$ and $x_{5} \geq 0$.	5	3	7
	b)	Solve the recurrence relation $\mathrm{a}_{\mathrm{n}}-7 \mathrm{a}_{\mathrm{n}-1}+10 \mathrm{a}_{\mathrm{n}-2}=4^{\mathrm{n}}$ forn ≥ 2	5	3	7
		OR			
8.	a)	Determine the coefficient of x^{14} in $\left(1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}\right)^{10}$	5	3	7
	b)	Solve the recurrence relation $a_{n}-5 a_{n-1}+6 a_{n-2}=0, n \geq 2$ by using Generating functions.	5	3	7
		-			
		UNIT-V			
9.	a)	Define isomorphism of graphs. Examine whether the following graphs are isomorphic or not. a	6	3	7
	b)	State and Prove Euler's formula for planar graphs.	6	3	7
		OR			
10.	a)	Establish that a tree with " n " elements has exactly " n -1" edges.	6	3	7
	b)	Explain Kruskal's algorithm for minimal spanning tree with a suitable Example.	6	3	7

CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-MARKS

NOTE: Questions can be given as A,B splits or as a single Question for 14 marks

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R20
II B. Tech I Semester - MODEL QUESTION PAPER					
MICRO PROCESSORS AND MICRO CONTROLLERS					
(For CIC)					
Time: 3 Hrs.			Max. Marks:70		
Answer ONE Question from EACH UNIT					
All questions carry equal marks					
Assume suitable data if necessary					
			CO	KL	M
UNIT - I					
1.	a).	Distinguish between microprocessor and microcontroller.	1	2	7
	b).	Discuss in detail about High-Level Language programming System Development Environment.	1	2	7
OR					
2.	a).	Explain in detail about integrated development environment	1	2	7
	b).	Detailed discussion about Microcontrollers and system design	1	2	7
		-T-			
		UNIT - II			
3.	a).	Draw the internal architecture of 8086 microprocessor and explain its operation.	2	2	7
3	b).	Explain the Instruction set of 8086 microprocessor with example.	2	2	7
			-		
4.	a).	Define addressing mode and explain different addressing modes used in 8086 Microprocessor with examples	2	2	7
	b).	Sketch the timing diagram of minimum mode write operation and explain it.	2	3	7
UNIT - III					
5.	a).	Explain the briefly the different modes operation of 8255 PPI.	3	2	7
	b).	Explain different interfacing methods of 8255 .	3	2	7
OR					
6.	a).	Explain the briefly about 8254 timer interface.	3	2	7
6	b).	Detailed discussion about 8259 PIC and DMA controller interface.	3	2	7
		UNIT - IV			
7.	a).	Explain in detail about interrupts in 8051.	4	2	7
	b)	Explain in detail about serial communication system design with 8051.	4	2	7
		OR			
8.	a).	Draw and explain the internal architecture of 8051 family microcontroller and explain each block of it.	4	2	7
	b).	Explain the briefly the different Addressing modes of 8051.	4	2	7

		UNIT - V			
$\mathbf{9 .}$	a).	Explain in detail Embedded system design methodologies	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{7}$
	b).	Describe briefly about Advanced Microprocessor Architectures-286.	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{7}$
		$\mathbf{~ O R}$			
$\mathbf{1 0 .}$	\mathbf{a}.	Explain about Microprocessors and Microcontrollers System level interfacing design.	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{7}$
	b).	Explain in detail about RISC processors.	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{7}$

NOTE: Questions can be given as A,B splits or as a single Question for 14 marks

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

		UNIT-V					
$\mathbf{9 .}$	a).	Differentiate AWT and Swings.	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{7}$		
	b).	Write a JDBC program to retrieve data from the database.	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{7}$		
		OR					
$\mathbf{1 0}$	a).	Explain different types of JDBC Drivers with neat diagrams.	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{8}$		
	b).	Explain different types of Layout Managers.	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{6}$		
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL							M-MARKS

NOTE: Questions can be given as A,B splits or as a single Question for 14 marks

NOTE: Questions can be given as A,B splits or as a single Question for 14 marks

		UNIT-V			
$\mathbf{9}$	$\mathbf{a})$.	Explain ARIES Recovery Algorithm	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{6}$
	b).	Describe procedure to insert a new element in B+ tree	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{8}$
		OR			
$\mathbf{1 0}$		Explain 2PL and time stamp ordering protocols	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{1 4}$
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL MARKS					

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

Course Code:B20CI2201					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R20
II B. Tech II Semester MODEL QUESTION PAPER					
COMPUTER ORGANIZATION \&ARCHITECTURE					
(For CIC)					
Time: 3 Hrs.			Max. Marks:70		
Answer ONE Question from EACH UNIT					
All questions carry equal marks					
Assume suitable data if necessary					
			CO	KL	M
		UNIT-I			
1.	a).	Differentiate between Von Neumann and Harvard Architecture	1	2	7
	b).	Explain different arithmetic operations on floating point numbers	1	2	7
OR					
2.	a).	Discuss three representations of Signed integers with suitable examples.	1	2	7
	b).	Describe the different types of computers.	1	2	7
		Hers			
		UNIT-II			
3.	a).	Construct an instruction cycle and describe it with suitable example	2	3	7
	b).	Explain various types of interrupts in detail.	2	2	7
		- OR $\square_{\text {OR }}^{\text {O }}$	[
4.	a).	Explain in detail about timing and control	2	2	7
	b).	Illustrate the micro-programmed control unit.	2	2	7
UNIT-III					
5.	a).	Write a program to evaluate the arithmetic statement using different instruction formats $\mathrm{Y}=(\mathrm{e}+\mathrm{f}) *(\mathrm{~g}-\mathrm{h})$	3	3	7
	b).	What do you mean by addressing mode? Explain the following addressing modes with examples. i) Index addressing mode ii) Relative addressing mode	3	2	7
OR					
6.	a).	Explain general register organization	3	2	7
	b).	Explain RISC with an example	3	2	7
UNIT-IV					
7.	a).	What is the need of cache memory? Discuss any two mapping techniques used in cache memory.	4	2	7
	b).	Describe memory hierarchy with a neat block diagram in a computer system. Compare the parameters size, speed and cost per bit in the hierarchy.	4	2	7

		OR			
8.	a).	With a neat sketch explain the working principle of DMA	4	2	7
	b).	Discuss about handshaking technique in asynchronous data transfer	4	2	7
		UNIT-V			
9.	a).	What is multiprocessor system? Explain the advantages of multi processors over uniprocessors	5	2	7
	b).	What is parallel processing? Explain any parallel processing mechanism.	5	2	7
		OR			
10.	a).	Explain the interconnection structure for multiprocessor systems	5	2	7
	b).	Explain the instruction pipeline processing in RISC architecture.	5	2	7

CO-COURSE OUTCOME

NOTE: Questions can be given as A,B splits or as a single Question for 14 marks

	b).	Define GNF and Convert the following CFG to GNF $\mathrm{S} \rightarrow \mathrm{AA} \mid \mathrm{a}, \mathrm{A} \rightarrow$ SS \|b	3	3	7
		UNIT-IV			
7.	a).	Define Pushdown Automata? Explain the acceptance of PDA by empty stack using an example.	4	2	7
	b).	Construct PDA for recognizing the Context free language $L=\left\{a^{n} c b^{n} /\right.$ $n>=1\}$	4	3	7
		OR			
8.	a).	What is ID of PDA? Explain the acceptance of PDA by final state	4	2	7
	b).	Construct a PDA to accept language of odd length palindrome strings	4	3	7
		UNIT-V			
9.	a).	Define the Turing Machine and Explain different types of TM?	5	2	7
	b).	Construct a TM for recognizing the language $\mathrm{L}=\left\{\mathrm{WW}^{\mathrm{R}} / \mathrm{W}\right.$ in $\left.(\mathrm{a}, \mathrm{b})^{*}\right\}$	5	3	7
		OR			
10.	a).	Explain about PCP and give an example	5	2	7
	b).	Explain about P and NP classes	5	2	7

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

NOTE: Questions can be given as A,B splits or as a single Question for 14 marks

