	Course Code: B20BS2101										
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A))		R20						
		II B. Tech I Semester Regular Examinations		I							
	NUMERICAL METHODS & VECTOR CALCULUS										
		(Common to CE, CIC, CSD, CSE, EEE & IT)									
Tim	e: 3 H	lrs.	Max	ks:70							
		Answer ONE Question from EACH UNIT									
		All questions carry equal marks									
		Assume suitable data if necessary									
			CO	KL	M						
		UNIT-I									
1.	a)	Determine a real root of the equation $x \log_{10} x = 1.2$ by Regula-falsi method and correct to two decimal places	1	3	7						
	b)	Determine the cube root of 41 using Newton-Raphson method	1	3	7						
		OR									
2.	a)	Determine Newton's forward difference interpolation formula find Y (3), from the following table	1	3	7						
		X 0 5 10 13 20 23 Y 7 11 14 18 24 32									
	b)	Using Lagrange's interpolation formula find Y (10) from the followingTableX56911Y12131416	1	3	7						
		ENGINEERINGCOLLE	9E								
		Estd. 1980 UNIT-II UTONOMOUS									
3.	a)	Evaluate $\int_0^1 x^3 dx$ with five subintervals by trapezoidal rule	2	3	7						
	b)	Evaluate $\int_0^2 \frac{dx}{x^3+x+1}$ by using Simpsons 1/3 rd rule with $h = 0.25$	2	3	7						
		OR									
4.	a)	Employ Taylor's method to obtain approximate value of y at $x = 0.2$ for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$	2	3	7						
	b)	Evaluate $y(0.2)$ using Runge-Kutta 4 th order method, given $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}, y(0) = 1.$	2	3	7						
		UNIT-III									
5.	a)	Apply change the order of integration and evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dx dy$	3	3	7						
	b)	Evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates	3	3	7						
		OR									
6.	a)	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$	4	3	7						
	b)	Determine the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$	4	3	7						

		UNIT-IV			
7.	a)	Obtain the directional derivative of $\varphi = xy + yz + zx$ at A in the direction of AB where $A = (1, 2, -1)$, $B = (5, 6, 8)$.	5	3	7
	b)	Determine the values of <i>a</i> and <i>b</i> such that the surface $ax^2 - byz = (a + 2)x$ and $4x^2y + z^3 = 4$ cut orthogonally at $(1, -1, 2)$.	5	3	7
		OR			
8.	a)	Show that the vector $(x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ is irrotational and find its scalar potential.	5	3	7
	b)	Determine Curl \overline{F} and $div\overline{F}$ for $\overline{F} = x^2 y \overline{I} - 2xz \overline{J} + 2yz \overline{K}$	5	3	7
		UNIT-V			
9.	a)	Determine the work done in moving a particle once round the circle $x^2 + y^2 = 9$ in the xy- plane by the force $\overline{F} = (2x - y - z)\overline{i} + (x + y - z^2)\overline{j} + (3x - 2y + 4z)\overline{k}$	6	3	7
	b)	Evaluate the line integral by Stokes's theorem for the vector function $\overline{F} = y^2 \overline{\imath} + x^2 \overline{\jmath} + (z+x)\overline{k}$ and <i>C</i> is the triangle with vertices (0,0,0), (1,0,0) and (1,1,0).	6	3	7
		OR			
10.	4	Verify Green's theorem in the plane For $\oint_C [(3x^2 - 8y^2)dx + (4y - 6xy)dy],$ where C is boundary of the region defined by $y = \sqrt{x}, y = x^2$	6	3	14
	14	CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M	-MAR	KS	

		Course	Code:	B20B	52103
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)		R20
		II B. Tech I Semester - MODEL QUESTION PAPER			•
		MATHEMATICAL FOUNDATION OF COMPUTER SCIENC	CE		
		(Common to AIDS, CIC & CSD)			
Tim	le: 3]	Hrs.	Max.	Mark	s:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary		I	
			CO	KL	Μ
1.	a)	Establish that $\{((p \lor q) \to r) \land (\neg p)\} \to (q \to r)$ is a tautology	1	3	7
	b)	Establish that the following argument is valid by using the rules of inference If Clifton does not live in France, then he does not speak French. Clifton does not drive a Datsun If Clifton lives in France, then he rides a bicycle Either Clifton speaks French, or he drives a Datsun Hence, Clifton rides a bicycle	1	3	7
	1	OR			
2.	a)	Verify that the following argument is valid by using the rules of inference, quantifiers Babies are illogical Nobody is despised who can manage a crocodile Illogical people are despised Hence, babies cannot manage crocodiles.	1 GF	3	7
	b)	Determine the PDNF and PCNF of $p \rightarrow [(p \rightarrow q) \land \sim (\sim q \lor \sim p)]$	1	3	7
	,	istd. 1980			
		UNIT-II			
3.	a)	Determine the number of ways of arranging 6 boys and 6 girls in a row. Also determine the number of arrangements in which i) All girls will be together. ii) No two girls will be together. iii) Boys and girls come alternatively.	2	3	7
	b)	i)Determine the term independent of x in the expansion of $(x^2 + \frac{1}{x})^{12}$ ii) Determine the coefficient of $x^5y^{10}z^5w^5$ in the expansion $(x + 7y + 3z + w)^{25}$	2	3	7
		OR			
4.	a)	A cricket team of 11 is to be selected out of 14 players of whom 5 are bowlers. Determine the number of ways in which this can be done so as to include at least 3 bowlers.	2	3	7
	b)	Determine the number of integers between 1 and 250 which are divisible by any of the integers2,3,5 or 7.	2	3	7
		UNIT-III			
5.	a)	Let R denote a relation on the set of ordered pairs of positive integers	3	3	7

		such that $(x,y)R(u,v)$ if and only if $xv = yu$. Then establish that 'R' is				
		an equivalence relation.				
	b)	Define Hasse diagram. Draw the Hasse diagram for the Poset ($P(S)$, \subseteq) where $S = \{1,2,3\}$	3	3	7	
		OR				
6.	a)	Establish that a Lattice 'L' is distributive iff $\forall x, y, z \in L \ (x * y) \oplus (y * z) \oplus (z * x) \equiv (x \oplus y) * (y \oplus z) * (z \oplus x)$	4	3	7	
	b)	Consider the Boolean polynomial $\mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{x} * (\mathbf{y} \bigoplus \mathbf{z}')$. If $B = \{0, 1\}$, compute the truth table of the function $\mathbf{f} \colon B_3 \longrightarrow B$ defined by \mathbf{p} . Also draw logical diagram.	4	3	7	
		UNIT-IV				
7.	a)	5	3	7		
	b)	Solve the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 4^n$ for $n \ge 2$	5	3	7	
		OR				
8.	a)	Determine the coefficient of x^{14} in $(1+x+x^2+x^3)^{10}$	5	3	7	
	b)	Solve the recurrence relation $a_n - 5a_{n-1} + 6a_{n-2} = 0, n \ge 2$ by using Generating functions.	5	3	7	
	14					
	16	UNIT-V				
	14	Define isomorphism of graphs. Examine whether the following				
9.	a)	graphs are isomorphic or not. a' b' b' b' c e' b'	GE 6	3	7	
	b)	c d c' d'	6	2	7	
	D)	State and Prove Euler's formula for planar graphs.	0	3	/	
4.0		UK				
10.	a)	Establish that a tree with "n" elements has exactly "n-1" edges.	6	3	7	
	b)	Explain Kruskal's algorithm for minimal spanning free with a suitable Example.	6	3	7	
	(O-COURSE OUTCOME KL-KNOWLEDGE LEVEL M	M-MARKS			

		Course	Code:J	B20CI	2101
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		II B. Tech I Semester - MODEL QUESTION PAPER			
		MICRO PROCESSORS AND MICRO CONTROLLERS			
		(For CIC)			
Ti	me: 3	Hrs.	Max.	Mark	ks:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	Μ
		UNIT – I			
1.	a).	Distinguish between microprocessor and microcontroller.	1	2	7
	b)	Discuss in detail about High-Level Language programming System	1	2	7
	D).	Development Environment.	L	2	/
		OR			
2.	a).	Explain in detail about integrated development environment	1	2	7
	b).	Detailed discussion about Microcontrollers and system design	1	2	7
		UNIT – II			
3	2	Draw the internal architecture of 8086 microprocessor and explain its	2	2	7
5.	а).	operation.		2	/
	b).	Explain the Instruction set of 8086 microprocessor with example.	2	2	7
		ENGINEERING COLLEG			
4.	a).	Define addressing mode and explain different addressing modes used in	2	2	7
••	u).	8086 Microprocessor with examples			<u> </u>
	b).	Sketch the timing diagram of minimum mode write operation and explain	2	3	7
		It.		_	
-				+	
_					<u> </u>
5.	a).	Explain the briefly the different modes operation of 8255 PPI.	3	2	7
	b).	Explain different interfacing methods of 8255.	3	2	7
		OR		<u> </u>	<u> </u>
6.	a).	Explain the briefly about 8254 timer interface.	3	2	7
	b).	Detailed discussion about 8259 PIC and DMA controller interface.	3	2	7
		UNIT – IV	<u> </u>	<u> </u>	<u> </u>
7.	a).	Explain in detail about interrupts in 8051.	4	2	7
	b)	Explain in detail about serial communication system design with 8051.	4	2	7
		OR			
8.	a).	Draw and explain the internal architecture of 8051 family microcontroller	4	2	7
		and explain each block of it.	<u> </u>	ļ	
	b).	Explain the briefly the different Addressing modes of 8051.	4	2	7

		UNIT – V					
9.	a).	Explain in detail Embedded system design methodologies	5	2	7		
	b).	Describe briefly about Advanced Microprocessor Architectures-286.	5	2	7		
		OR					
10.	a).	Explain about Microprocessors and Microcontrollers System level interfacing design.	5	2	7		
	b).	Explain in detail about RISC processors.	5	2	7		
	CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-N						

		Course (Code: 1	B20CS	52103
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEG	E (A)		R20
		II B. Tech I Semester - MODEL QUESTION PAPER			
		OPERATING SYSTEMS			
		(Common to CIC, CSE)			
Tir	ne: 3	3 Hrs.	Max	. Marl	ks:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	Μ
		UNIT-I			
1	a).	Explain the abstract view of system components.	1	2	7
	b).	Discuss the Simple Operating System Structure.	1	2	7
		OR			
2	a).	Explain different types of Operating Systems.	1	2	7
	b)	Define a System call. Explain the various types of system calls provided	1	2	7
	D).	byOperating System,	1	2	/
		UNIT-II			
3	a).	Differentiate one- to- one, many- to-one multi-threading models.	2	2	7
	b)	Explain Dining Philosophers problem? Discuss the solution to Dining	2	2	7
	D).	Philosopher's problem using monitors.		4	1
		OR			
4	a).	Explain Primitive Priority Scheduling Algorithms with an Example?	2	2	7
	b).	Discuss the solution to Reader/Writers Problem using semaphores.	2	2	7
		UNIT-III			
5	a).	Differentiate paging and segmentation.	3	2	7
	b).	Explain briefly the performance of Demand paging with an example.	3	2	7
		OR			
6	a)	Define Page Fault. When does a page fault occur? Describe the action	3	2	7
U	a).	taken by OS when page fault occurs.	3	2	1
		Apply FIFO and LRU page replacement algorithms for the following			
	b).	string todetermine the number of page faults.	3	3	7
		7 0 1 2 0 3 0 4 2 3 0 2 1 2 0 1 7 0 1 for a memory with '3' frames.			
		UNIT-IV			
		Apply the deadlock detection algorithm to determine deadlock will exist			
7	a).	or notion the following system with 5 process and 3 resource types	4	3	7
		(resource type Anas / instances, D has 2 instances, and C has 6 instances) Snapshot at time TO			
		Shapshot at time 10			

			Process	All	ocati	on	R	eque	st	A	vaila	ble				
				A	В	С	A	В	С	Α	В	С				
			P ₀	0	1	0	0	0	0	0	0	0				
			P ₁	2	0	0	2	0	2							
			P ₂	3	0	3	0	0	0							
			P ₃	2	1	1	1	0	0							
			P ₄	0	2	2	0	0	2							
	b).	Explain various File access methods with Suitable examples								4	2	7				
						OR	2									
8	a).	Explain deadlock avoidance using banker's algorithm with suitable example.									4	2	7			
	b).	Apply FCFS, SSTF disk arm scheduling schemes to find total number headmovements for the following string 98 183 37 122 14 124 65 67 assume the head pointer at 53.									4	3	7			
					U	NIT	·V									
9	a).	Explain System	m and Ne	twork	Thre	ats								5	2	7
	b).	Describe the S	ystem Co	mpor	nent o	f Wi	ndow	s XF	Parch	itect	ure			5	2	7
		OR														
10	a).	• Explain Principles and domain Protections.								5	2	7				
	b).	Describe the components of the Linux System.								5	2	7				
		CO-COURS		OME]	KL-k	SNO ^V	WLE	DGE	LEV	EL		N	M-MA	RKS	1

Estd. 1980

		Course C	Code:E	20CL	2102
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)]	R20
		II B. Tech I Semester - MODEL QUESTION PAPER			
		JAVA PROGRAMMING			
		(For CIC)			
Tim	e: 3 I	Irs.	Max.	Mark	s:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
	1	Assume suitable data if necessary	T	,	r
			CO	KL	Μ
		UNIT-I			
1.	a).	Discuss about the Features of Java.	1	2	7
	b).	1	2	7	
2.	a).	Explain Constructor Overloading with suitable example.	1	2	8
	b).	1	2	6	
		UNIT-II			
3.	a).	Explain the differences between Arrays and Array List.	2	2	7
	b).	Why Java String object is immutable? Explain by using a suitable example.	2	2	7
	- N				
4.	a).	Explain the differences between String class and String Buffer class.	2	2	7
	b).	Write a Java Program to implement various methods of Hash Map class.	2	2	7
		UNIT-III			
5.	a).	Why multiple in heritance is not possible through classes in Java? Explain it with an example.	3	3	8
	b).	Differentiate Abstract class and Interface.	3	2	6
		OR			
6.	a).	Discuss about Byte Oriented IO and Character Oriented IO.	3	2	6
	b).	Discuss about procedure for creating packages with an example.	3	3	8
		UNIT-IV			
7.	a).	Explain about the mechanism of Exception handling in Java.	4	2	7
	b).	Write a Java Program to create Custom Exception.	4	3	7
		OR			
8.	a).	Explain about the life cycle of thread with a neat sketch.	4	2	7
	b).	Write a Java program to implement thread synchronization using multiplication tables.	4	3	7

		UNIT-V								
9.	a).	Differentiate AWT and Swings.	5	2	7					
	b).	Write a JDBC program to retrieve data from the database.	5	3	7					
		OR								
10.	a).	Explain different types of JDBC Drivers with neat diagrams.	5	2	8					
	b).	Explain different types of Layout Managers.	5	2	6					
	CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-MARKS									

		Co	ourse C	ode: l	B20B8	52201
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEG	E (A)			R20
		II B. Tech II Semester MODEL QUESTION PAPE	R			
		PROBABILITY AND STATISTICS				
		(Common to AIDS, AIML, CIC & CSE)				
Tim	1e: 3 H	Hrs.		Max.	Marl	ks:70
		Answer ONE Question from EACH UNIT				
		All questions carry equal marks				
	_	Assume suitable data if necessary				_
				CO	KL	Μ
		UNIT-I				
1.	a).	What are the different methods in collecting Primary and Secondary	⁷ data.	1	2	7
	b).	Define		1	2	7
		i) Skewness ii) Kurtosis iii) Moments				<u> </u>
		OR				
		The diameter of an electric cable is assumed to be a continuous r	andom			
2.	a).	variable with p.d.f $f(x) = 6x(1-x), 1 \le x \le 1$, verify that the ab	ove is	1	3	7
		p.d.f. also find mean and variance.				
	. 4	Define Random variable and explain about types of random va	riables			_
	b).	with examples. Also discuss discrete and continuous prob	ability	1	2	7
	- 14	functions of random variables.				
		ENGINE FRING COL	HEA			
		A two-dimensional r.v. (X, Y) has a bivariate distribution given by				_
3.	a).	$P(X, Y) = \frac{1}{32}$, for $x = 0, 1, 2, 3$ and $y = 0, 1$.		2	3	7
		Calculate marginal distributions of X and Y				
		If X is a continuous random variable and $Y = aX + b$, prove that	1			_
	b).	$E(Y) = a E(X) + b$ and $V(Y) = a^2 V(X)$, where V stands for varian	ce and	2	3	7
		a, b are constants.				
		OR				
		Let X be a random variable with the following distribution				
4.	a).	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	3	7
		$\begin{array}{ c c c c c } P(X=x) & 1/6 & 1/2 & 1/3 \\ \hline Find F(x) & F(x^2) = d units the large of superstation selection for the large of superstation selection (2.2)$	1)2			
		Find $E(x)$, $E(x^2)$ and using the laws of expectation calculate $E(2X + A)$	1) ²			
		A random variable X has the probability density function is give $f(x) = x$ if $0 \le x \le 1$	en by			
		$\int (x) - x \qquad \text{if } 0 \le x < 1$			2	-
	b).	$= 2 - x \text{ if } 1 \le x < 2$		2	3	
		=0 elsewhere				
		Find its moment generating function.				
	1			1	1	1

5.	a).	Explain fitting o	f a parabola	a and ob	tain norn	nal equa	ations	5.	3	3	7
		Fit a straight line	e to the foll	owing d	lata by m	ethod of	fleas	t squares			
	b).	x 0	1	2	3	4			3	3	7
		y 1	1.8	1.3	2.5	6.3					
					OR						
6		Define types of	correlatio	n and	regressio	on. Wri	te th	e properties of	4	2	7
0.	a).	correlation and r	egression c	oefficie	nts.				4	2	'
		Find the regressi	on lines for	r the fol	lowing da	ata					
	b).	x 0	1	2	3	4	5	6	4	3	7
		f(x) 5	18	28	12	7	6	4			
				UI	NIT-IV						
		Fi a Binomial distribution for the following data									
7.	a).	x 0	1 2	3	4	5	6	7 8	4	3	7
		f(x) 56	156 132	2 92	37	22	4	0 1			
	b).	Show that mean	and varian	ce are e	qual for F	Poisson	distri	bution.	5	3	7
		OR									
0	a)	In a normal distribution 31% of the items are under 45 and 8% are over								2	7
0.	a).	64. Find mean an	nd sta <mark>ndar</mark> o	d deviat	io <mark>n.</mark>				3	3	/
	b).	Define Uniform	distribution	n and ca	lc <mark>ulate it</mark>	s mean a	and V	Variance.	5	3	7
			į								
	1			U	NIT-V						
		Explain the follo	wing conce	epts	NEE	KIV	JG	COLLEG	Τ		
0		(i) Large and small samples							6	2	7
9.	a).	(ii) Type I and Type II errors							0	2	/
		(iii) Critic	cal region a	nd leve	l of signi	ficance.					
	b)	A coin is tossed	d 400 time	es and	head tur	ned up	216	times. Test the	6	2	7
	D).	hypothesis is the	coin unbia	ised?					0	3	/
					OR						
		The marks obtain	ned by 15 s	tudents	in an exa	iminatio	on hav	ve a mean 60 and			
10.	a).	variance 30. Find 99% confidence interval for the mean of the population									7
		marks, assuming it to be normal.									
		Fit a Poisson distribution and test for goodness of fit for the following data									
	h)									3	7
	<i>wj</i> •	X 0 1 2 3 4									'
			f(x) 1	7 52	54	31	6				
		CO-COURSE OU	TCOME	KL-	KNOWI	EDGE	EV	EL M-N	IARK	S	

		Course	Code:	B20CS	52201
				R20	
		II B. Tech II Semester MODEL PAPER			
		DATA BASE MANAGEMENT SYSTEMS			
		(Common to CIC & CSE)			
Ti	me: 3	Hrs.	Max	. Mar	ks:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
	1	Assume suitable data if necessary			-
			CO	KL	Μ
		UNIT-I			
1	a).	Compare Database Management Systems with File Processing Systems.	1	2	8
	b).	Explain the duties of DBA	1	2	6
		OR			
2	a).	Explain Three-Tier architecture for data independence.	1	2	7
	b).	Describe the structure of a Database Management System.	1	2	7
		UNIT-II			
3		Give syntax and apply the DDL and DML commands for defining and constructing two tables of your choice with appropriate data.	2	3	14
	1	OR			
4		Illustrate different Integrity constraints in relational model with appropriate examples	2	3	14
		Estd. 1980 AUTONOMOUS			
		UNIT-III			
5	a).	Illustrate E-R diagram with different mapping cardinalities	3	3	8
	b).	Illustrate aggregation in ER model with example.	3	3	6
		OR			
6	a).	Apply different kinds of joins in SQL on example tables	3	3	8
	b).	Demonstrate how set operations are performed in SQL with examples.	3	3	6
		UNIT-IV			
7	a).	Illustrate BCNF and 3NF	4	3	7
		Given Relation R(A,B,C,D,E) and FD(A->B,B->C,C->D,D->E). Find	4	3	7
	b).	closure of each attribute and then determine candidate keys.	-	5	,
		OR			
8	a).	How do you use multi valued dependencies to determine whether a table is in 4NF or not?	4	3	7
	b).	A relation $R(A,B,C,D)$ with FD's {A->B, B->C, C->D} is decomposed into $R1(A,B,C)$ and $R2(C,D)$. Find whether it is lossless join decomposition or not and why?	4	3	7

		UNIT-V				
9	a).	a). Explain ARIES Recovery Algorithm		2	6	
	b).	Describe procedure to insert a new element in B+ tree	5	2	8	
		OR				
10		Explain 2PL and time stamp ordering protocols		2	14	
	CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-MARKS					

Course Code:B20CI2201

R20

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) **II B. Tech II Semester MODEL QUESTION PAPER**

COMPUTER ORGANIZATION & ARCHITECTURE

(For CIC)

Time: 3 Hrs. Max. Marks:70 Answer ONE Question from EACH UNIT All questions carry equal marks Assume suitable data if necessary CO KL Μ UNIT-I Differentiate between Von Neumann and Harvard Architecture 1. 2 1 7 a). **b**). Explain different arithmetic operations on floating point numbers 1 2 7 OR Discuss three representations of Signed integers with suitable 7 2. a). 1 2 examples. Describe the different types of computers. 2 **b**). 1 7 UNIT-II 3. a). Construct an instruction cycle and describe it with suitable example 2 3 7 2 7 2 **b**). Explain various types of interrupts in detail. OR 4. Explain in detail about timing and control 2 2 7 a). 2 2 b). Illustrate the micro-programmed control unit. 7 **UNIT-III** Write a program to evaluate the arithmetic statement using different 3 5. 7 3 a). instruction formats Y=(e + f) * (g - h)What do you mean by addressing mode? Explain the following 7 addressing modes with examples. i) Index addressing mode ii) 3 2 **b**). Relative addressing mode OR 6. Explain general register organization 3 2 7 a). Explain RISC with an example 2 **b**). 3 7

		UNIT-IV			
7.	a).	What is the need of cache memory? Discuss any two mapping techniques used in cache memory.		2	7
	b).	Describe memory hierarchy with a neat block diagram in a computer system. Compare the parameters size, speed and cost per bit in the hierarchy.		2	7

		OR			
8.	a).	With a neat sketch explain the working principle of DMA	4	2	7
	b).	Discuss about handshaking technique in asynchronous data transfer	4	2	7
		UNIT-V			
9.	9. a). What is multiprocessor system? Explain the advantages of mult processors over uniprocessors		5	2	7
	b). What is parallel processing? Explain any parallel processing mechanism.		5	2	7
		OR			
10.	a).	Explain the interconnection structure for multiprocessor systems		2	7
	b).	Explain the instruction pipeline processing in RISC architecture.		2	7
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-N				KS	

Course Code:B20CI2202

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) II B.Tech. II Semester MODEL QUESTION PAPER

FORMAL LANGUAGES AND AUTOMATA THEORY

(For CIC)

Time: 3 Hrs.

Max. Marks:70

R20

		Answer ONE Question from EACH UNIT				
		All questions carry equal marks				
Assume suitable data if necessary						
					Μ	
		UNIT-I				
		Construct DFA for the following languages i) $L=\{w/w \text{ begins with } 1$				
1.	a).	and ends with 00, w in $\{0,1\}^*$ ii) L={w/w contains Even number of	1	3	7	
		zeros and Even number of ones, w in $\{0,1\}^*$				
	L)	Illustrate the differences in Mealy and Moore Machines and give	1	2	7	
	D).	-	-			
		OR				
2.	a).	Construct NFA for accepting the strings {ab, ba} and then convert it to DFA.	1	3	7	
	b). Explain about minimization algorithms and apply minimization algorithm or following DFA					
		ENG UNIT-II RING LOLLEG				
3.	a).	Define Regular expression and construct NFA with ϵ moves equivalent to the Regular Expression (ab + aab)*	2	3	7	
	 b). Is set of all strings beginning with 01 and ending with 10. 2. Set of all strings having three consecutive zeros or three consecutive ones 				7	
		OR				
4.	a).	Explain the statement of the Pumping lemma on Regular sets and list the applications of pumping lemma.	2	2	7	
	b).	Apply pumping lemma to show the set of all even length palindrome strings is not regular.	2	3	7	
		UNIT-III				
5.	a).	Construct Context free grammar for $L = \{ WCW^R / W \text{ in } (0+1)^* \}$	3	3	7	
	b).	Define CNF and convert the following CFG to CNF S \rightarrow aSa / bSb / a / b		3	7	
		OR	-	-	-	
6.	a).	Construct Context free grammar for generating all palindrome strings over (0,1)	3	3	7	

	b Define GNF and Convert the following CFG to GNF S \rightarrow AA a, A \rightarrow		3	3	7	
	0).	SS b				
		UNIT-IV				
7.	a).	Define Pushdown Automata? Explain the acceptance of PDA by empty stack using an example.	4	2	7	
	b). Construct PDA for recognizing the Context free language L= $\{a^n \ c \ b^n \ n \ge 1\}$					
		OR				
8.	a). What is ID of PDA? Explain the acceptance of PDA by final state				7	
	b).	Construct a PDA to accept language of odd length palindrome strings	4	3	7	
		UNIT-V				
9.	a).	Define the Turing Machine and Explain different types of TM?	5	2	7	
	b).	Construct a TM for recognizing the language $L = \{WW^R / W \text{ in } (a,b)^*\}$	5	3	7	
		OR				
10.	a).	Explain about PCP and give an example			7	
	b).	Explain about P and NP classes	5	2	7	
	CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-MA					

	Course	Code:	B20H5	52201	
			R20		
	II B.Tech. II Semester MODEL QUESTION PAPER				
	MANAGERIAL ECONOMICS AND FINANCIAL ACCOUNTAN	NCY			
	(Common to AIML, CIC, CSE & IT)				
Time:	3 Hrs.	Max	x. Mark	ks: 70	
	Answer ONE Question from EACH UNIT				
	All questions carry equal marks				
	Assume suitable data if necessary				
		CO	KL	Μ	
	UNIT-I				
1.	Define Managerial Economics and Explain its nature and scope	1	2	14	
	OR				
2.	What do you mean by Elasticity of demand? Explain in detail about Degrees of Price elasticity of Demand?	1	2	14	
	UNIT-II				
3.	Define Cost & classify the Elements of Cost?		2	14	
	OR				
4.	How do you calculate BEP? What are its Assumptions and Applications?	2	3	14	
	UNIT-III				
5.	What are Market Structures and explain the features of Perfect Competition?	3	2	14	
	Estd. 1980 OR				
6.	Why is pricing significant in the context of business? Describe any four pricing practices?	3	2	14	
	UNIT-IV				
7.	Describe about the Importance of Accounting and types of accounts	4	2	14	
İ	OR				

		From the following Trail B	alance of Suresh as	at December 31, 2013,	4	3	14
		prepare Trading, Profit and	Loss Account for the	e year ended December			
		31, 2013 and a Balance She	et as on that date:	2			
			Dr. (Rs.)	Cr. (Rs.)			
		Purchases of materials	32,000				
		Productive wages	13,000				
		Sales		60,000			
		Salaries	4,000				
		Travelling expenses	1,000				
		Carriage inwards	550				
		Insurance	300				
		Commission	650				
		Rent and rates	1,000				
		Cash in hand	350				
8.		Cash at bank	5,550				
		Repairs	600				
		Sundry expenses	110				
		Mortgage		6,100			
		Buildings	8,000				
		Machinery	3,000				
		Furniture	1,000				
		Stock on hand (1.1.2013)	11,500				
		Capital		21,310			
	17	Sundry debtors	9,000				
		Sundry creditors	GINEERI	4,200	GE		
			91,610	91,610			
		Closing stock Rs. 12,000		0010000			
							-
		UNII-V				2	14
9.		Explain about capital and the sources available for raising finance OR Explain about the concept and causes of depreciation. Evaluate the			5	2	14
					5	2	14
10.		straight- line method and din	ninishing balance me	ethods		_	
· · · ·		CO-COURSE OUTCOME	KL-KNOWLEDG	ELEVEL N	I-MARK	S	