

8	a)	Compare various plot functions available in R with an emphasis on data distribution.	3	3	7
	b)	Write the syntax to write plot to a file in various file formats.	3	2	7
		UNIT-V			
9	a)	Discuss on Probability distribution i.e., Normal Distribution Binomial Distribution and Poisson Distribution	4	2	7
	b)	Explain about Random Forest in detail.	4	2	7
		OR			
10	a)	Compare correlation and covariance measures of dataset features.	4	3	7
	b)	Differentiate between simple linear and multiple linear regressions.	4	3	7

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

		chart?				
		UNIT-V				
9.	a).	What is resampling and describe the methods of Down sampling, up sampling with examples	5	3		
	b).	Describe the various tools used to represent the time data types	5	3		
		OR				
10.	a).	Describe various applications of time series data and list out the basics of time series data	5	3		
	b).	Explain the various methods for Moving window functions	5	3		

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

6.	(a).	Discuss in detail various application areas of Computer and Web-based Geographic Information Systems.	4	2	7
	(b).	Differentiate between the Raster and Vector model of representing spatial data in computer models. State the applications of each model clearly.	4	2	7
		UNIT-IV			
7.	(a).	What is Overlay Analysis in GIS? Explain its applications and elaborate with one example.	4	2	7
	(b).	Define DEM and DTM. Draw out the differences in their conception and application.	4	2	7
		OR			
8.	(a).	What is Network Analysis in GIS? Explain its applications and elaborate with one example.	4	2	7
	(b).	Explain how 3 D Modelling tools in GIS can help in scenario planning for a dam breach scenario.	4	2	7
		UNIT-V			
9.	(a).	What is Land use / Land cover map? Explain its significance in any type of Geospatial Analysis.	5	2	7
	(b).	How can GIS help in Environmental Impact Assessment? Elaborate your answer.	5	2	7
10.	(a).	State any twp 3D Modelling applications using GIS and explain each one briefly.	5	2	7
	(b).	Elaborate on a few urban applications of GIS.	5	2	7

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

Course Code: B20CEOE02					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R20
III B.Tech. I Semester MODEL QUESTION PAPER					
DISASTER MANAGEMENT					
(Open Elective Common to AIDS, CSE, CSBS, ECE, EEE, IT \& ME)					
TIME: 3Hrs			Max.Marks:70M		
Answer ONE Question from EACH UNIT					
All questions carry equal marks					
Assume suitable data if necessary					
			CO	KL	M
UNIT-I					
1.	a)	What are Natural Disasters? Is there a relationship between development and occurrence of natural disasters? Support your answer with data.	1	2	7
	b)	What are urban floods? Should they be considered natural disaster or man-made disaster? Support your answer with reasons.	1	2	7
		(OR)			
2.	a)	What are Man-made Disasters? How is the work of scientists and engineers related to their occurrence? Suggest measures to reduce their occurrence.	1	2	7
	b)	Are urban and rural population susceptible to the same types of natural and man-made disasters? Support your answer with reasons. Are rural population at lower risk compared to urban population from a disaster point-of-view?	1	2	7
		UNIT-II			
3.	a)	Relate the Impacts of disasters on the loss of human lives and livestock with examples. How are the physical and environmental conditions affected by a disaster?	2	2	7
	b)	Summa rise the interventions needed in a community in the aftermath of a disaster. What support do the disaster survivors need to rebuild their communities?	2	2	7
		(OR)			
4.	a)	Explain global climate change. Establish any relationship between global climate change and the occurrence of natural disasters.	2	2	7
	b)	Why are GHG (Green House Gas) reductions the focus of climate change mitigation? Which of the GHGs are the greatest contributors to climate change from the top 5 GHG emitting countries in the world?	2	2	7

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

Course Code: B20CBOE01					
SAGI RAMAKRISHNAM RAJU ENGINEERING COLLEGE (A)				R20	
III B.Tech. I Semester MODEL QUESTION PAPER					
PYTHON PROGRAMMING					
(Open Elective Common to CE)					
Time: 3 Hrs.			Max. Marks:70		
Answer ONE Question from EACH UNIT					
All questions carry equal marks					
Assume suitable data if necessary					
			CO	KL	M
		UNIT-I			
1	a)	Explain about input validation loops and nested loops with examples	1	2	7
	b)	Write a Python program to calculate the amount payable if money has been lent on simple interest. Principal or money lent $=P$, Rate of interest $=R \%$ per annum and Time $=T$ years. Then Simple Interest $(\mathrm{SI})=(\mathrm{P} \times \mathrm{R} \times \mathrm{T}) / 100$. Amount payable $=$ Principal + SI. P, R and T are given as input to the program.	1	4	7
	OR				7
2	a)	Explain about explicit conversion with examples.	1	2	
		Explain about precedence of all operators in Python.	1	2	7
		$\square \square$			
		EIIUNIT-II			
3	a)	Define Python string padding functions? Explain with examples	2	2	7
	b)	Illustrate if, if-else, if-elif-else Statements with examples.	2	3	7
	OR				
4	a)	Explain about data encryption in Python.	2	2	7
	b)	Explain about special data types in Python (List, tuple, set, dictionary)	2	2	7
	UNIT-III				
5	a)	Write a Python program to create three dictionaries, then create one dictionary that will contain the other three dictionaries.	3	3	7
	b)	Describe Python list/Array methods? Explain.	3	2	7
	OR				
6	a)	Discuss about importing module from a package.	3	2	7
	b)	Explain about anonymous or Lambda function with merits and demerits	3	2	7
	UNIT-IV				
7	a)	Explain about structuring classes with inheritance and polymorphism.	4	2	7
	b)	Illustrate manipulating file pointer using seek with suitable example.	4	3	7
	OR				

$\mathbf{8}$	a)	Demonstrate the case study of an ATM using classes.	4	3	7
	b)	Explain about reading numbers from a file using Python program.	4	2	7
		UNIT-V			
$\mathbf{9}$	a)	Describe syntax errors and exceptions in python briefly?	5	2	7
	b)	Illustrate Entry fields for the input and output of text with example.	5	3	7
		OR			
$\mathbf{1 0}$	a)	Describe user Defined exception with example.	5	2	7
	b)	Define Scrolling list boxes with example.	5	2	7

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

Course Code: B20CBOE02					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R20
III B.Tech. I Semester MODEL QUESTION PAPER					
DATABASE MANAGEMENT SYSTEMS					
(Open Elective Common to CIVIL, ECE, EEE \& ME)					
Time: 3 Hrs.			Max. Marks: 70 M		
Answer ONE Question from EACH UNIT					
All questions carry equal marks					
Assume suitable data if necessary					
			CO	KL	M
		UNIT-I			
1.	a).	Explain the problems associated with conventional file processing system.	1	2	8
	b).	Explain different levels of abstraction offered by DBMS with an example.	1	2	6
OR					
2.	a).	Draw a neat diagram of the structure of DBMS and explain the functions of various components of DBMS.	1	2	8
	b).	Explain about Centralized and Client-Server architectures of DBMS.	1	2	6
		E-			
		UNIT-II			
3.	a).	A University has several departments. Each department has several instructors and one among them is the HOD. Each instructor teaches multiple courses. Each department offers several courses. A student can enrol for several courses offered by different departments. Considering above description, develop a complete E-R diagram for the University database.	2	3	7
	b).	Explain briefly about any four Integrity Constraints with suitable examples.	2	2	7
OR					
4.	a).	There are different libraries in a University. Each library maintains different books that are issued for loan. A book is uniquely identified in conjunction with its library. A student can subscribe to any one library, but, can take books from any library. Considering above description, develop a complete E-R diagram for the University database.	2	3	7
	b).	Consider an E-R diagram of a binary relationship of your choice with key and participation constraints. Translate the E-R diagram into a collection of suitable relations.	2	3	7
		UNIT-III			
5.	a).	Consider the following schema. Students (Std_ID: String, S_Name: String, Dept: String, GPA: Real) Courses (C_ID: String, C_Name: String, Credits: Integer, Offered_by_Dept: String) Enrolled (Std_ID: String, C_ID:String, Grade: Character). Answer the following queries in SQL.	3	3	8

		i) For each course offered by CSE department, find the total number of enrolments. ii) Find the sum of credits of all courses enrolled by student "S01". iii) Find the courses that have at least 10 enrolments. iv) Applying outer join, find the count of enrolments for each course offered.			
	b).	Explain with a suitable example, the way nested and correlated queries are evaluated.	3	3	6
		OR			
6.	a).	Consider the following schema. Students (Std_ID: String, S_Name: String, Dept: String, GPA: Real) Courses (C_ID: String, C_Name: String, Credits: Integer, Offered_by_Dept: String) Enrolled (Std_ID: String, C_ID:String, Grade: Character). Answer the following queries in SQL. i) Write a correlated query to find IDs and names of students who are enrolled for course "C01". ii) Create a view named "GoodGrades" which contain Std_ID, S_Name and C_ID of enrolments for which the grade is "A". iii) Display Students table in the descending order of names of students. iv) Find the IDs and names of students who enrolled for both the courses "C02" and "C03".	3	3	8
	b).	Explain with suitable examples, natural inner join and all variants of natural outer joins.	3	3	6
		EMILIIMEERIIILGULEEGE			
		Fstd 1980 UNIT-IV			
7.	a).	Consider the schema $R(A, B, C, D, E, G)$ and the list of functional dependencies $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{BC}, \mathrm{EC} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{A}, \mathrm{G} \rightarrow \mathrm{E}\}$. Determine all candidate keys of R. Find the best normal form that R satisfies.	4	3	8
	b).	Explain with an example, multi-valued dependency and fourth normal form.	4	3	6
		OR			
8.	a).	Find the best normal form satisfied by the relation $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$ with set of $\mathrm{FDs} \mathrm{F}=\{\mathrm{BC}->\mathrm{D}, \mathrm{AC}->\mathrm{BE}, \mathrm{B}->\mathrm{E}\}$ Decompose R into the next higher normal form.	4	3	8
	b).	What do you mean by lossless join decomposition and dependency preserving decomposition? Write down the tests for the same.	4	3	6
		UNIT-V			
9.	a).	Explain briefly ACID properties of a transaction.	5	2	6
	b).	Explain recovery related structures maintained during normal execution and explain the three phases of ARIES recovery algorithm.	5	2	8
		OR			
10.	a).	Explain search and insert operations on a B+ tree index structure.	5	2	7

	b).	Explain with an example, hash based indexing.	5	2	7
	CO-COURSE OUTCOME	KL-KNOWLEDGE LEVEL	M-MARKS		

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

		i) Check whether the tree is almost complete or not? ii) Determine the height of the tree iii) Write post order and preorder traversals			
	b).	Create max heap for the following elements $33,14,65,02,76,69,59,85,47,99,98$.	4	3	7
		OR			
8	a).	A binary tree has seven nodes. The Preorder and Post order traversal of the tree are given below. Can you draw the tree? Justify. Preorder: GFDABEC Post order ABDCEFG	4	3	7
	b).	Write in-order, pre-order and post-order traversal of a binary tree.	4	2	7
		UNIT-V			
9	a).	What is minimum cost spanning tree? Discuss with an example	5	2	7
	b).	Explain Dijkstras Algorithm with an example	5	3	7
		OR			
10	a).	Discuss Kruskal "s algorithm advantages and disadvantages.	5	3	7
	b).	Discuss the Representation of Graphs.	5	2	7

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)	R 20
III B. Tech. I Semester MODEL QUESTION PAPER	
JAVA PROGRAMMING	
(Open Elective Common to CE, ECE, EEE \& ME)	

Time: 3 Hrs.
Max. Marks:70

10	a).	Discuss the types of JDBC Drivers.	5	2	8
	b).	Write a JDBC program to retrieve data from the database.	5	2	6

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

	b).	Develop a PHP program to fetch data from the MYSQL database	5	3	7	
		OR				
$\mathbf{1 0}$	a).	Develop a PHP Program to Insert data into a MYSQL database	5	3	7	
	b).	Explain about Cookies in PHP with an example.	5	2	7	
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL						

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

9	a).	ConvertheDecimalnumber867.9intoBinary,Octal,andHexadecimal?	5	3	7
	b).	Explain operation and truth table of a)NAND b)NOR c)XOR gates.	5	2	7
		OR			
$\mathbf{1 0}$	a).	Explain operation and State Transition table of J-K flip-flop?	5	2	7
	b).	Convert following Decimal numbers to Binary a)1101b)1110.1111c)217.67	5	3	7

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

	b).	Obtain the exponential Fourier series for $\mathrm{x}[\mathrm{n}]=$ Sin 0.1 Пn	3	4	7
		OR			
6.	a).	Obtain the Exponential Fourier series for the periodic signal $\mathrm{x}(\mathrm{t})=$ $\mathrm{e}^{-\mathrm{t}}$ shown below.	3	4	7
	b).	Determine the best approximation of signal $\mathrm{x}(\mathrm{t})=\mathrm{t}$ in terms of $\mathrm{y}(\mathrm{t})=$ Sin t over an interval $(-\Pi \leq \mathrm{t} \leq \Pi)$.	3	4	7
		UNIT-IV			
7.	a).	Determine the Fourier Transform of $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-2\|t\|}$	4	3	7
	b).	Derive the convolution property of the Continuous time Fourier transform.	4	4	7
		Cor			
8.	a).	Determine the inverse DTFT of Estd. 1980 $X\left(e^{j \omega}\right)=\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}\|a\|<1$	4	3	7
	b).	Obtain the step response of the system described by the following difference equation using DTFT. $y[n]-a y[n-1]=x[n]$ $\|a\|<1$	4	4	7
		UNIT-V			
9.	a).	Determine the Z-transform of $\mathrm{x}[\mathrm{n}]=\mathrm{n} \mathrm{a}^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$	5	3	7
	b).	State and Explain about the Sampling theorem. What is "Aliasing" and how it can be avoided?	5	4	7
		OR			
10.	a).	Obtain the inverse Z-transform $X(z)=\frac{z}{2 Z^{2}-3 Z+1} \quad R O C:\|Z\|<\frac{1}{2}$	5	3	7
	b).	A signal $\mathrm{x}(\mathrm{t})=\cos 5 \pi \mathrm{t}+0.5 \cos 10 \pi \mathrm{t}$ is instantaneously sampled. Determine the maximum interval of sampling from which the signal can be recovered.	5	4	7

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL

NOTE : Questions can be given as A, B splits or as a single Question for 15 marks

		UNIT-II			
3.	a).	Calculate the rms value and average for the saw-tooth waveform shown in figure 4. Figure 4	2	3	7
	b).	A coil having a resistance of 50 ohms and an inductance of 0.02 H is connected in parallel with a capacitor of $25 \mu \mathrm{~F}$, across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the current in the coil and the capacitor. Also find the total current taken from the supply, the overall power factor and total power consumed. Draw the phasor diagram.	2	4	7
		OR			
4.	a).	Derive the expression for Average and RMS values of a sinusoidal waveform.	2	3	7
	b).	A Capacitor of $79.6 \mu \mathrm{~F}$ is connected in series with a resistance of 30Ω across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine (i) impedance (ii) current (iii) phase angle and (iv) Phasor diagram.	2	3	7
		UNIT-III			
5.	a).	Explain the principle of operation of DC generator.	3	3	7
	b).	Derive the torque equation od DC motor.	3	3	7
		OR			
6.	a).	Explain laws of Illumination in detail.	3	3	7
	b).	Explain the construction and working of Fluorescent Lamp.	3	3	7
		UNIT-IV			
7.	a).	Explain the operation of Single phase full wave diode bridge rectifier with C-filter.	4	3	7
	b).	Explain the operation of Uninterrupted Power Supply (UPS).	4	3	7
		OR			
8.	a).	Explain the working of Li-ion battery.	4	3	7
	b).	Define DOD, C-rate, Capacity, SOC and Energy density of a Battery.	4	3	7
		UNIT-V			
9.	a).	Explain the construction details and operation of ELCB (Earth leakage Circuit Breaker).	5	3	7
	b).	Discuss about electrical safety measures.	5	3	7

		OR			
10.	a).	Explain about working principle of MCB (Miniature circuit Breaker).	5	3	7
	b).	Define earthing. Explain the construction details and procedure of pipe earthing with a neat sketch.	5	3	7

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

6.		Write a program to Compute the (a) P (4), (b) P' (4), for a given expression $P(x)=-0.02 x^{3}+0.1 x^{2}-0.2 x+1.66$, which passes through the four points $(1$, $1.54),(2,1.5),(3,1.42)$, and (5, 0.66).	3	3	14
		UNIT-IV			
7.	a).	Write a program to find the rank of M and N , the Eigen values and eigenvector of M and N of a given matrices (i) $M=\left[\begin{array}{cc}-4 & 5 \\ 8 & -11\end{array}\right]$ (ii) $N=\left[\begin{array}{ccc}0.33 & 1 & 3.3 \\ 0.5 & 0.45 & -5.12 \\ 2 & -2 & 0\end{array}\right]$:	4	3	7
	b).	Write a program to solve the set of linear system equations using the Matrix inverse method. $\begin{array}{rr} 2 x_{1}+4 x_{2}-6 x_{3}= & -4 \\ x_{1}+5 x_{2}+3 x_{3}= & 10 \\ x_{1}+3 x_{2}+2 x_{3}= & 5 \end{array}$	4	3	7
		OR			
8.		Write a program to solve the first order ordinary differential equation as given below: $\mathrm{dx} / \mathrm{dt}=\mathrm{x}+\mathrm{t}$. With the initial conditions $\mathrm{x}(0)=0$.	4	3	14
		+ , - - - -			
		UNIT-V			
9.		Write a simple program to solve a nonlinear equations using gauss-seidel Iteration. Assume necessary data is required. $f(x)=x^{3}-6 x^{2}+11 x+6=0$.	5	3	14
		- 0 OR -			
10.	a).	Explain in detail about the Rungekutta-4 method for solving ordinary differential equation.	5	3	7
	b).	Explain in detail about the trapezoidal method for solving integral equation.	5	4	7

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

		list.			
		UNIT-IV			
7.	a).	Explain Heap sort algorithm. Create Heap for the following elements and then sort them. ($13,102,405,136,15,105,390,432,28,444$)	3	3	7
	b).	Develop a binary search tree resulting after inserting the following integer keys $49,27,12,11,33,77,26,56,23,6$. (i) Check whether the tree is almost complete or not? (ii) Determine the height of the tree (iii) Write post order and pre-order traversals	3	3	7
		OR			
8.	a).	How to represent binary tree using arrays and linked list?	3	2	7
	b).	Construct an AVL tree by inserting the following elements successively $\begin{array}{llllllll} \mathrm{C} & \mathrm{O} & \mathrm{M} & \mathrm{P} & \mathrm{U} & \mathrm{~T} & \mathrm{E} & \mathrm{R} \end{array}$	3	3	7
		UNIT-V			
9.	a).	Explain Warshall's algorithm to find transitive closure of a graph with a suitable example.	3	2	7
	b).	What is minimum cost spanning Tree? Explain the process of finding the minimum spanning tree with suitable example.	3	2	7
		OR			
10.	a).	Explain Depth First Search algorithms in detail.	3	2	7
	b).	Explain Dijkstra's algorithm with suitable example.	3	2	7

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

Code: B20ITOE02					
SAGI RAMAKRISHNAM RAJU ENGINEERING COLLEGE (A)				R20	
III B.Tech. I Semester MODEL QUESTION PAPER					
JAVA PROGRAMMING					
(Open Elective Common to CE, ECE, EEE \& ME)					
Time: 3 Hrs.			Max. Marks:70		
Answer ONE Question from EACH UNIT					
All questions carry equal marks					
Assume suitable data if necessary					
			CO	KL	M
	UNIT-I				
1.	a).	Illustrate the concept of JVM with a Diagram.	1	3	7
	b).	Illustrate the differences between C, C++ and Java with a neat diagram	1	3	7
OR					
2.	a).	Illustrate the structure of a java program	1	3	7
	b).	Explain java buzz words in detail.	1	3	7
		UNIT-II			
3.	a).	Write a java program to perform constructor overloading with an example	2	2	7
	b).	Explain class Declaration syntax in java and modifiers	2	2	7
		- OR			
4.	a).	Write a java program to perform method overloading. LOL E C	2	2	7
	b).	Explain the keyword final how it is used in java	2	2	7
		UNIT-III			
5.	a).	Explain polymorphism and its types. Construct a java program which Illustrates the functionality of method overloading and method overriding.	3	3	7
	b).	Write how Multiple Inheritance is possible in java with an example program	3	3	7
OR					
6.	a).	Demonstrate an array? Write a java program to read an array of \mathbf{n} elements and print them.	3	3	7
	b).	Write a java program to find second largest number in an array.	3	3	7
UNIT-IV					
7	a).	Interpret the concept of packages in java.	4	2	7
	b).	Construct a java program that shows the functionality of creating a public class in an already existing user defined package.	4	2	7
	OR				
8.	a).	Write a java program to create custom exception.	4	3	7
	b).	Illustrate 2 different ways of creating a thread in java with code	4	3	7

		UNIT-V			
9.	a).	Explain any 4 layout mangers in java with example code.	5	2	7
	b).	Write a java swing code to create a frame and add any five different components onto the frame.	5	3	7
		OR			
10.	a).	Write a java program to explain event handling.	5	2	7
	b).	Explain JDBC Architecture and procedure to establish JDBC Database Connections.	5	2	7

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

Course Code: B20MEOE02					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R20
III B.Tech. I Semester MODEL QUESTION PAPER					
MECHATRONICS					
(Open Elective Common to AIDS, CE, CSBS, CSE, ECE. EEE \& IT)					
Time: 3 Hrs.			Max. Marks: 70 M		
Answer ONE Question from EACH UNIT					
All questions carry equal marks					
Assume suitable data if necessary					
			CO	KL	M
UNIT-I					
1.	a).	What do you understand by the term Mechatronics? With a neat diagram, show the basic elements of a Mechatronic system. Give examples of Mechatronic systems.	1	2	7
	b).	Write short notes on i) proximity sensor and ii) hall effect sensor	1	2	7
OR					
2.	a).	Explain optical encoder and strain gauges.	1	2	7
2	b).	Discuss integrating and differentiating amplifier.	1	2	7
		\cdots			
		UNIT-II			
3	a).	What is direction control valve? Explain the operation of single solenoid valve.	2	2	7
	b).	What do you understand by the term Actuation system? With a neat schematic diagram, describe the construction and working of a Hydraulic system.	2	2	7
OR					
4	a).	Explain digital to analog and analog to digital converters.	2	2	7
	b).	Draw ladder logic diagram of OR, NOR, and XOR logic.	2	2	7
UNIT-III					
5	a).	What is the use of a mechanical switch? How does an electrical relay operate? Draw the relay drive circuit and explain its operation.	3	3	7
	b).	Write the working principle of stepper motor.	3	3	7
OR					
6.	a).	Derive the relationship between the height $h 2$ and time for the hydraulic system shown in Figure 1. Neglect inertance.	3	3	7

		Figure 1			
	b).	Derive the relationship between the output, the potential difference across the resistor R of $v \mathrm{R}$, and the input v for the circuit shown in Figure 2 which has a resistor in series with a capacitor. Figure 2	3	3	7
		UNIT-IV			
7.	a).	A first-order system has a time constant of 4 s and a steady-state transfer function of 6 . What is the form of the differential equation for this system?	4	3	7
	b).	What is the overall transfer function for a closed-loop system having a forward-path transfer function of $5 /(s+3)$ and a negative feedback-path transfer function of 10 ?	4	3	7
		OR			
8.	a).	Explain the closed loop control system using a block diagram.	4	3	7
	b).	Explain PD and PID control.	4	3	7
		UNIT-V			
9.	a).	Describe basic elements of microprocessor based control system.	5	3	7
	b).	Lists out differences between microprocessor and microcontroller.	5	3	7
		OR			
10.	a).	Define PLC. Sketch and explain the basic functions of PLC.	5	3	7
	b).	What is an industrial robot? With the help of a block diagram describe different components of a robotic system.	5	3	7

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

8.	a).	Explain about the concept of spring back and discuss about any two materials used in sheet metal forming.	4	3	7
	b).	Explain about the sheet metal shearing operations with a neat sketch.	4	3	7
			UNIT-V		
9.	a).	Explain about the specifications of a lathe machine with neat sketch.	5	3	7
	b).	Explain about the parts and functioning of radial arm drilling machine with a neat sketch.	5	3	7
		OR			
10.	a).	Illustrate the up milling and down milling process with a neat sketch.	5	3	7
	b).	Explain about the working of vertical grinding machine.	5	3	7

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

6.		Determine the singular values of $\mathrm{A}: \mathrm{A}=\left[\begin{array}{ccc}0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1\end{array}\right]$ and Determine the SVD decomposition of A.	4	3	14
		UNIT-IV			
7.	a).	Differentiate f with respect to t and g with respect to X, where $\begin{aligned} & f(t)=\sin \left(\log \left(t^{\mathrm{T}} \mathrm{t}\right)\right) ; \mathrm{t} \in \mathrm{R}^{\mathrm{D}} \\ & \mathrm{~g}(\mathrm{X})=\operatorname{tr}(\mathrm{A} \times \mathrm{B}) ; \mathrm{A} \in \mathrm{R}^{\mathrm{D} \times \mathrm{E}} ; X \in \mathrm{R}^{\mathrm{E} \times{ }^{\mathrm{F}} ; \mathrm{B} \in R^{\mathrm{F} \times \mathrm{D}}} \end{aligned}$ where tr denotes the trace.	5	3	7
	b).	Compute the derivative $\mathrm{f}^{1}(\mathrm{x})$ of the logistic sigmoid $\mathrm{f}(\mathrm{x})=\frac{1}{1+e^{-x}}$	5	3	7
		OR			
8.	a).	If $\mathrm{g}(\mathrm{z} ; \mathrm{v}):=\log \mathrm{p}(\mathrm{x} ; \mathrm{z})-\log \mathrm{q}(\mathrm{z} ; \mathrm{v}) \& \mathrm{z}:=\mathrm{t}(\varepsilon ; v)$ for differentiable functions $\mathrm{p} ; \mathrm{q} ; \mathrm{t}$. By using the chain rule, compute the gradient $\frac{d}{d v} g(z ; v)$	5	3	7
	b).	If $f(x)=x^{T} y ; x, y \in R^{n}$, then obtain the dimension of $\frac{\partial f}{\partial x}$ and Compute the Jacobians.	5	3	7
		2-s)			
		UNIT-V			
9.		Consider a mixture of two Gaussian distributions $0.4 \aleph\left(\left[\begin{array}{c} 10 \\ 2 \end{array}\right],\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\right)+0.6 \aleph\left(\left[\begin{array}{l} 0 \\ 0 \end{array}\right],\left[\begin{array}{ll} 8.4 & 2.0 \\ 2.0 & 1.7 \end{array}\right]\right)$ a. Compute the marginal distributions for each dimension. b. Compute the mean, mode and median for each marginal distribution. c. Compute the mean and mode for the two-dimensional distribution.	6	3	14
		OR			
10.		Consider the following convex optimization problem $\min _{w \in \mathbb{R}^{D}} \frac{1}{2} w^{T} w \text { subject to } w^{T} w \geq 1 .$ Derive the Lagrangian dual by introducing the Lagrange multiplier λ.	6	3	14

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

