		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)	Code:	B20H3	R20
		IV B.Tech. I Semester MODEL OUESTION PAPER			
		UNIVERSAL HUMAN VALUES-2: UNDERSTANDING HARMO	ONY		
		(Common to AIDS, CSBS, CSE, IT & ME)			
Tim	e: 3 H	Irs	Max. M	larks:	70 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
			СО	KL	Μ
		UNIT-I			
1.	a).	Discuss natural acceptance.	1	2	7
	b).	Differentiate prosperity and deprivation.	1	2	7
		OR			
2.	a).	Write a note on physical facilities.	1	2	7
	b).	Deliberate the right understanding in perspective to self-exploration.	1	2	7
		UNIT-II			
3.	a).	Illustrate coexistence of "I" and "Body ".	2	2	7
	b).	Explain doer, seer and enjoyer.	2	2	7
	,	OR			
4.	a).	Discuss Characteristic activities of Harmony with "I".	2	2	7
	b).	Explain Sanyam and Health.	2	2	7
		ENGINEERING COLLEGE			
		Estd. 1980 UNIT-III UTONOMOUS			
5.	a).	Write a note on human-human relationship as regarding harmony.	3	2	7
	b).	Differentiate intention and competence.	3	2	7
		OR			
6.	a).	Discuss salient values in relationship.	3	2	7
	b).	Illustrate universal Harmonious Society - an Undivided society.	3	2	7
	1	UNIT-IV			
7		Discuss orders of life in nature and its significance self-regulation of individual.	4	2	14
		OR			
8.		Illustrate existence of human being as coexistence with universe in perspective of space.	4	2	14
		UNIT-V			
9.		Discuss importance of professional competence for augmenting universal human order.	5	3	14
		OR			

1

Г

10.	a).	Case study of typical holistic technologies.	5	3	7
	b).	Role of engineer in promoting harmony in society.5		3	7
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M		-MARI	KS		

	Course Code: B20ME4101						
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20		
		IV B.Tech. I Semester MODEL QUESTION PAPER					
		FINITE ELEMENT ANALYSIS					
		Mechanical Engineering					
Tim	e: 3 H	Irs N	Iax. N	larks:	70 M		
		Answer ONE Question from EACH UNIT					
		All questions carry equal marks					
	1	Assume suitable data if necessary	[1	1		
			CO	KL	Μ		
		UNIT-I					
1.	a).	Derive the stress and strain relations for a 3D system.	1	3	7		
	b).	List the applications of Finite Element Analysis	1	2	7		
		OR					
2.	a).	Discuss in detail about the general procedure of FEM formulation with an example.	1	2	7		
	b).	Discuss in detail about plane stress and plane strain conditions.	1	3	7		
		UNIT-II					
3.		Consider the bar as shown in Fig. 1 is subjected to a temperature difference of 600C. Determine the nodal displacements and stresses induced in the elements. Take the coefficient of thermal expansions as $18.9 \times 10-6/0C$ (for E=83GPa element), $18.9 \times 10-6/0C$ (for E=70GPa element) and $11.7 \times 10-6/0C$ (for E=200GPa element) respectively. E = 70 GPa $A = 1200 \text{ mm}^2$ E = 83 GPa $A = 2400 \text{ mm}^2$ Fig. 1	2	4	14		
		OR					
4.		Derive the elemental stiffness matrix for one dimensional quadratic bar element.	2	3	14		
		UNIT-III					
5.		For the two-bar truss shown in Fig. 2, determine the displacements of node 1 and the stress in element 1-3.	3	4	14		

		Fig. 2			
6		A beam of 10 m length is fixed at one end and supported by a roller at the other end has a 20 KN concentrated load applied at the centre of the span. Calculate the deflection under the load. Assume $E = 20 \times 10^5$ N/mm ² and I = 2500 cm ⁴ .	3	4	14
		IINIT-IV			
7.		For the triangular plate shown in Fig. 3, determine the deflection at the point of load application and also stress induced in the plate using a one element model by considering it as plane stress problem. 100N $100N$ 100	4	4	14
		OR			
8.	a).	Derive the shape functions for the following higher order elements (i) Nine Nodded Quadrilateral Element (ii) Eight Nodded Quadrilateral Element	4	3	7
	b).	Evaluate $\int_{-1}^{1} [3e^x + x^2 + \frac{1}{(x+2)}] dx$ integral using one point and two point Gauss quadrature formulae and compare the results with exact solution.	4	3	7
9.		UNIT-V Derive the elemental stiffness matrix for 3noded triangular axi symmetric element.	5	3	14
		OR			
10.		An axi-symmetric body with a linearly distributed load on the conical surface is shown in Fig. 4. Determine the equivalent point loads at node 2 (60, 40), 4 (40, 55) and 6 (20, 70).	5	4	14

	Course Code: B20ME4102					
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20	
		IV B.Tech. I Semester MODEL QUESTION PAPER				
		PRODUCTON PLANNING AND CONTROL Mechanical Engineering				
Tim	e. 3 F					
1 1111		Answer ONE Ouestion from EACH UNIT				
		All questions carry equal marks				
		Assume suitable data if necessary				
			CO	KL	Μ	
		UNIT-I				
1.	a).	What is PPC? what is the need for PPC?	1	2	7	
	b).	Discuss the objectives of production control.	1	2	7	
		OR				
2.	a).	Explain organization of production planning and control department.	1	2	14	
		UNIT-II What are the types of forecasting? Explain exponential emothing				
3.	a).	method	2	3	7	
	b).	Write the advantages of forecasting	2	2	7	
		OR				
		Using the exponential smoothing technique, Compute the forecasts from the following data (time series) under the situations when $\alpha = 0.7$.			_	
4.	a).	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3	1	
		Demand 29 30 32 31 27 26 30 33 32 31				
	b).	Explain qualitative method and quantitative methods	2	2	7	
		UNIT-III				
5.	a).	What are the advantages of inventory control? What are the symptoms	3	2	7	
	••)•	of poor inventory control		_	-	
	b).	Explain the significance of EOQ formula. What are its Limitations?	3	3	7	
			2	2	-	
0.	a).	What is meant by VED analysis? What is its significance?	3	2	7	
	U).		3	3	/	
		UNIT-IV				
7.	a).	Explain about BOM with a suitable example	4	3	7	
	b).	Explain the procedure involved in route sheet preparation.	4	3	7	
		OR				

8.	a).	What is line balancing? What is its importance in PPC? Explain it with	4	3	7
-		an example.			
	b).	Explain about anyone scheduling policy.	4	3	7
		UNIT-V			
9.	a).	Briefly explain dispatching rules	5	3	7
	b)	Describe dispatching control in intermittent production and continuous	5	2	7
	D).	production.	5	3	/
		OR			
10.	a).	Discuss in details the sequential steps involved in dispatching	5	3	7
	b).	Explain the role of computers in PPC.	5	3	7
		CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-	MARI	KS	

Course C					E4103
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R20
	IV B.Tech. I Semester MODEL QUESTION PAPER				
		INDUSTRIAL ROBOTICS			
		Mechanical Engineering			
Tin	Time: 3 Hrs.				: 70 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	Μ
		UNIT–I			
1.	a).	Explain various components of robot.	1	2	7
	b).	Discuss applications of robot in brief.	1	2	7
		OR			
2.	a).	Explain working principle of encoders.	1	2	7
	b).	Classify and compare various types of actuation systems.	1	2	7
		UNIT-II			
3	a).	Determine the new location of point $P(1, 2, 3)^T$ relative to the reference frame after a rotation of 30° about the z-axis followed by a rotation of	2	3	7
5.		60° about the y-axis.		5	,
		A frame B is rotated 90° about the z-axis, then translated 3 and 5 units			
		relative to the n- and o-axes respectively, then rotated another 90° about			
		the n-axis, and finally, 90° about the y-axis. Calculate the new location			
	b).	and orientation of the frame.	2	3	7
		$B = \begin{bmatrix} 0 & 0 & -1 & 1 \end{bmatrix}$			
		OR			
		Suppose that a robot is made of a Cartesian and <i>RPY</i> combination of			
		joints. Find the necessary <i>RPY</i> angles to achieve the following:			
4.	a).	0.527 - 0.574 0.628 4 0.369 0.819 0.439 6	2	3	7
		$T = \begin{bmatrix} 0.000 & 0.010 & 0.010 & 0\\ -0.766 & 0 & 0.643 & 9 \end{bmatrix}$			
	b).	Also, solve for the Euler angles for the above matrix	2	3	7
		UNIT–III			
5.	a).	Explain the concept of DH notation with a general case of a robot joint.	3	2	8

	b).	Obtain the DH parameters and derive the forward kinematics equation $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & &$			
		$z_{U} \qquad \qquad$	3	5	6
		OR			
6.	a).	In the 2-DOF robot, the transformation matrix ${}^{0}T_{H}$ is given in symbolic form, as well as in numerical form for a specific location. The length of each link l_{1} and l_{2} is 1 unit. Solve the values of θ_{1} and θ_{2} for the given location. ${}^{0}T_{H} = \begin{bmatrix} C_{12} & -S_{12} & 0 & l_{2}C_{12} + l_{1}C_{1} \\ S_{12} & C_{12} & 0 & l_{2}S_{12} + l_{1}S_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -0.2924 & -0.9563 & 0 & 0.6978 \\ 0.9563 & -0.2924 & 0 & 0.8172 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Suppose the location and orientation of a hand frame is expressed by the following matrix. What is the effect of a differential rotation of 0.15 radians about the z-axis, followed by a differential translation of [0.1, 0.1, 0.3]? Find the new location of the hand.	3	3	7
		${}^{R}T_{H} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$		5	,
		UNIT–IV			
7.		Joint 1 of the 6-axis robot is to go from initial angle of $\theta_i = 30^\circ$ to the final angle of $\theta_f = 75^\circ$ in 5 seconds with a cruising velocity of $\omega_1 = 10^\circ$ /sec. Find the necessary time for blending and plot the joint positions, velocities, and accelerations.	4	3	14
		OR			
8.		Using the Lagrangian method, derive the equations of motion for the 2- DOF robot arm, as shown in Figure below. The center of mass for each link is at the center of the link. The moments of inertia are I_1 and I_2 .	4	3	14

		$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $			
		UNIT–V			
9.	a).	Determine the motion of the system shown below if the parameter values are $m = 1$, $b = 5$, and $k = 6$ and the block is released from rest from a position $x = -1$.	5	3	7
	b).	Explain the concept of control law partitioning with the help of block diagram	5	2	7
		OR			
10	a).	Analyze the stability of a linear spring mass damper system using Lyapunov method	5	4	7
	b).	Develop the block diagram for model based control for nonlinear control of manipulator	5	3	7

	Course Code: B20ME4105						
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20		
		IV B.Tech. I Semester MODEL QUESTION PAPER					
		QUALITY CONTROL AND ASSURANCE					
T .		Mechanical Engineering					
Tim	ie: 3 I		lax. M	larks:	70 M		
		Answer ONE Question from EACH UNIT					
		All questions carry equal marks					
		Assume suitable data if necessary	CO	VI	М		
		LINIT I			IVI		
		What do you mean by quality quality of conformance and quality of					
1.	a).	performance?	1	2	7		
	b).	What is Deming's philosophy? Explain	1	2	7		
		OR					
2.	a).	Explain Quality Cost and Statistical Quality Control?	1	2	7		
	b).	Explain warning limits with neat diagrams?	1	2	7		
		UNIT-II					
3.	a).	State the objectives of xand R	2	2	7		
	b).	Prepare - R charts using the following measurements of surface roughness taken of 5 rough turned pieces. On each piece 5 measurements are taken along its length. These pieces have been picked up randomly from a lot of 50. Sample Five measurements per sample (x) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	3	7		
		OR					
4.	a).	What is group control chart? Explain the procedure for plotting control limits on group control chart	2	2	7		
	b).	An auto mobile part has to conformtothespecification of 5.0 ± 0.15 , failing which it must be scrapped. The data gathered by the quality control department as follows :n=5; number of samples =20, $\Sigma X=100.2$, $\Sigma \sigma=4.8$ Setup the Xand σ control charts. Assuming that the processis under control, what percentage of the total parts produced actually fellout side the specification limits?	2	3	7		

		UNIT-III			
5.	a).	Explain defect, defective and fraction defective?	3	2	7
		Twenty pieces of cloth out of different rolls contained respectively1,			
	b).	4,3,2,5,4,6,7,2,3,2,5,7,6,4,5,2,1,3 and 8 defects. As certain whether the	3	3	7
		process is in a state of quality control			
		OR			
6.	a).	Explain demerit control chart?	3	2	7
		In the following table refers to the competition of fmean and variance for 30 ideal			
		telephone assemblies with four classes of defectives			
		Class of defectives Weight No of Defects			
	b).	1 0.64 5	3	3	7
		2 0.25 15			-
		3 0.08 75			
		4 0.02 50			
		Establish is center line, UCL,LCL on demerit on troll chart			
		TINITAL TR			
7	-)	UNII-IV	4	2	-
7.	a).	Explain process capability analysis?	4	2	/
		The design specifications for a component are 100 ± 0.5 mm, whereas the			
	b).	andstandarddeviationis() 18 Does this figure call for any action by	4	3	7
		anustanual deviation is necessary and by whom?			
		OR			
8.	a).	Explain how do you determine process capability?	4	2	7
	b).	Explain smaller the better type and larger the better type?	4	2	7
	~).		-	_	
		UNIT-V			
9.	a).	Explain Single sampling plan with an eat schematic?	5	2	7
	1.)	Derive the OC curve and AOQ curve of single sampling plan N=1000,	_	2	-
	D).	n=100,C=3	5	3	1
		OR			
10.	a).	Explain Sequential sampling plan.	5	2	7
	b)	Design a single sampling by attributes plan which will meet or nearly	5	2	7
	D).	meet the following requirements $\alpha=0.05,\beta=0.05,P_1=0.02,P_2=0.08$	3	5	
		CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M	MARI	KS	

	Course Code: B20ME4106								
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R20				
	IV B.Tech. I Semester MODEL QUESTION PAPER								
	CONTROL SYSTEMS								
		Mechanical Engineering							
Tim	ne: 3 H	Irs. M	ax. M	arks:	70 M				
		Answer ONE Question from EACH UNIT							
		All questions carry equal marks							
		Assume suitable data if necessary							
			CO	KL	Μ				
		UNIT-I							
1.	a).	Define control system and distinguish between open loop and closed loop systems.	1	2	7				
	b).	Fig. 1	1	3	7				
		Estd. 1980 OR AUTONOMOUS							
2.		Convert the block diagram shown in Fig.2 to signal flow graph and find the transfer function of the system? $H_1 \rightarrow G_2 \rightarrow G_2 \rightarrow G_3 \rightarrow e \rightarrow f \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow e \rightarrow f \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow Fig. 2$	1	3	14				
		UNIT-II							
3.		Write the differential equations governing the mechanical system shown in the below Fig. 3 and draw force–voltage and force-current analogous circuit for the same mechanical system.	2	3	14				

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	OR			
4.	Find the differential equations governing the mechanical system shown in below Fig. 4. $ \begin{array}{c} $	2	3	14
	UNIT-III			
5.	Construct state-space model for a feedback system whose closed loop transfer function is given as, $\frac{Y(S)}{U(S)} = \frac{10(S+4)}{S(S+1)(S+3)}$	3	3	14
	Estd. 1980 OR AUTONOMOUS			
6.	Given that $A_1 = \begin{bmatrix} \sigma & 0 \\ 0 & \sigma \end{bmatrix}$; $A_2 = \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix}$; $A = \begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix}$ calculate e^{At} .	3	3	14
	UNIT-IV			
7.	G(s) = $\frac{\kappa}{s(s+1)}$. Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak overshoot and time at peak overshoot for a unit step input.	4	3	14
	OR			
8.	A unity feedback system has $G(s) = \frac{K}{S(S+1)(0.1s+1)}$ and $r(t)=10t$; find static error constants (K _p , K _v and K _a) and determine $e_{ss}(t)$.	4	3	14
	UNIT-V			
9.	Using Routh array, determine the stability of system represented by characteristic equation $S^6+S^5+5S^4+3S^3+2S^2-4S-8=0$	5	3	14
	OR			

10.	Draw Nyquist plot for a system whose open loop transfer function is given below and also determine the range of K for which closed loop system is stable. $G(s) = \frac{15}{s(s+1)(s+2)(s+3)}$	5	3	14
	CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-M	ARKS		

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) IV B.Tech. I Semester MODEL QUESTION PAPER

UNCONVENTIONAL MACHINING PROCESSES

Time: 3 Hrs.

Mechanical Engineering

Max. Marks: 70 M

R20

Course Code: B20ME4107

Answer ONE Question from EACH UNIT

	All questions carry equal marks					
			CO	KL	Μ	
		UNIT-I				
1.	a).	How the modern machining process are classified based on source of energy, and shapes to be machined?	1	2	7	
	b).	Explain the merits and demerits of Unconventional machining process over the traditional machining process.	1	3	7	
		OR				
2.	a).	Compare and contrast the various unconventional machining process based on type of energy employed, material removal rate, transfer media and economical aspects.	1	3	7	
	b).	Explain under what circumstances the unconventional machining process is considered for machining.	1	2	7	
		(現在1015-3月)				
		ENUNIT-II EDING COLLEGE				
3.	a).	List out the five important variables of AJM process. Draw a sketch showing the effect of these variables on MRR.	2	3	7	
	b).	Describe any three typical engineering applications of AWJM and WJM.	2	3	7	
		OR				
4.	a).	Explain the working principle of the USM process with a neat sketch and list out its applications.	2	3	7	
	b).	List out the applications, merits and demerits of USM process.	2	3	7	
		UNIT-III				
5.	a).	Explain the function of dielectric fluid in EDM. Name the common dielectric fluids used in EDM.	3	3	7	
	b).	Explain the principle of Wire EDM with suitable diagram.	3	3	7	
		OR				
6.	a).	Discuss the advantages of EDM as compared to other non-traditional methods regarding (i) Metal removed rate (ii) Accuracy and Surface finish.	3	3	7	
	b).	Explain the factors influencing the selection of tool material for electrode.	3	3	7	

		UNIT-IV			
7.	a).	Discuss about the generation of laser during LBM process and their merits and demerits.	4	3	7
	b).	Explain the working of Plasma Arc Machining and its applications with a neat sketch	4	3	7
		OR			
8.	a).	Explain the working principle of Laser beam machining with a neat sketch	4	3	7
	b).	Explain the process of Magnetic abrasive finishing with a neat sketch.	4	3	7
		UNIT-V			
9.	a).	Sketch and explain electro chemical honing process.	5	3	7
	b).	Explain the electro chemical machining process with a neat sketch	5	3	7
		OR			
10.	a).	Explain the working principle of chemical machining with neat sketch.	5	3	7
	b).	What are the various factors to be considered in the selection of Etchants for a particular application?	5	3	7
	(CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-	MAR	KS	

Estd. 1980

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) IV B.Tech. I Semester MODEL QUESTION PAPER

AUTOMOBILE ENGINEERING

Mechanical Engineering

Time: 3 Hrs.

Max. Marks: 70 M

R20

Course Code: B20ME4109

		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
			CO	KL	Μ
		UNIT-I			
1.	a).	What are the components of an automobile? Explain some of them?	1	2	7
	b).	Define chassis. List the components of chassis and discuss very briefly about each component.	1	2	7
		OR			
2.	a).	With the help of block diagram, explain the petrol injection system in S.I. Engine	1	2	7
	b).	Write a short note on Conventional, CRDI and dual fuel engines.	1	2	7
		UNIT-II			
3.	a).	Explain the principle of a clutch. Discuss its importance.	2	3	7
	b).	Explain constant mesh gearbox with a neat sketch.	2	3	7
		ENGOREERING COLLEGE			
4.	a).	Explain Automatic Gear box? AUTONOMOUS	2	2	8
	b).	Differentiate between CVT and Epicyclical gear box?	2	2	6
		UNIT-III			
5.	a).	Explain the Ackermann Steering mechanism with neat sketch	3	3	10
	b).	List the advantages and disadvantages of automatic transmission.	3	3	4
		OR			
6.	a).	What is meant by Wheel alignment? Write short notes on Caster and Camber?	3	3	7
	b).	Differentiate between tube and tubeless tires.	3	3	7
		UNIT-IV			
7.	a).	Explain the working of hydraulic brake system with neat diagram	4	2	7
	b).	What is meant by brake bleeding? Explain it	4	2	7
		OR			
1. 1. 2. 3. 4. 5. 6. 7. 8.	a)	List the various pollutants from the automobile. List the various	Δ	2	7
0.	a).	technologies used to control them.	+		1
	b).	Write a short notes on Starting system and ECU	4	2	7

		UNIT-V			
9.	a).	What are the advantages and disadvantages of hybrid vehicles when compared with normal vehicles?	5	3	7
	b).	How do you find degree of hybridization of vehicle.	5	3	7
		OR			
10.	a).	List out the several causes for Re boring Cylinder	5	2	7
	b).	Explain about periodic and preventive maintenance	5	2	7
•	. (CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M	-MAR	KS	•

	Course Code: B20ME4110					
	SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) RX IV B Tech. I Semester MODEL, OUESTION PAPER				R20	
	IV B.Tech. I Semester MODEL QUESTION PAPER ADDITIVE MANUFACTURING					
		ADDITIVE MANUFACTURING				
		Mechanical Engineering				
Tim	Time: 3 Hrs. Max. Marks: 70 M					
		Answer ONE Question from EACH UNIT				
		All questions carry equal marks	~ ~			
			CO	KL	M	
		UNIT-I				
1.	a).	Describe the Generic process of CAD to part	1	2	7	
	b).	Preparation of CAD model in additive manufacturing.	1	2	7	
		OR				
2.	a).	Briefly explain the generalized AM process chain.	1	2	7	
	b).	Discuss the file format used in additive manufacturing	1	2	7	
		UNIT-II				
3.	a).	Illustrate the working principal of Stereo Lithography apparatus.	2	3	7	
	b).	Explain the path generation in fusion decomposition modeling (FDM).	2	3	7	
		OR				
4.	a).	Explain the limitations and applications of liquid based AM.	2	3	7	
	b).	List out the applications, advantages and disadvantages of laminated object manufacturing (LOM)?	2	2	7	
		UNIT-III				
5.	a).	Explain with a neat sketch the working principle of Selective Laser Sintering process.	3	3	7	
	b).	Explain the steps involved in post processing technique in AM	3	3	7	
		OR				
6.	a).	Describe the working principle with benefits and limitations of Electron beam melting	3	3	7	
	b).	Explain the techniques used to enhance mechanical properties for AM parts	3	3	7	
		UNIT-IV				
7.	a).	Describe how reverse engineering will be applied to rapid proto typing technique.	4	3	7	
	b).	Discuss various materials available for AM.	4	2	7	
	1	OR				
8.	a).	Explain the steps involved in reverse engineering.	4	3	7	
	b).	Explain about ceramic tooling process.	4	3	7	

I

		UNIT-V			
9.	a).	Differentiate direct and indirect rapid tooling method.	5	3	7
	b).	Explain the process of 3D keltool in brief.	5	3	7
		OR			
10.	a).	Explain the process of RTV epoxy tooling. Write advantages, disadvantages and applications of it.	5	3	7
	b).	Write the applications of additive manufacturing in automotive and aerospace industries	5	2	7
	(CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M	-MARI	KS	

		Course C	Code: H	820MF	24111
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		IV B.Tech. I Semester MODEL QUESTION PAPER			
		POWER PLANT ENGINEEING			
-		Mechanical Engineering			
Tim	ie: 3 E		lax. M	larks:	70 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
	1	Assume suitable data if necessary	CO	VI	М
			CO	KL	IVI
1		UNIT-I	1	2	7
1.	a).	Explain about the steam power plant layout with heat sketch	1	2	7
	D).	Explain about the coal handning systems in detail.	1	<u>_</u>	/
2		UR Eveloin shout the multi-retent stelene with a next elected	1	2	7
<i>L</i> .	a).	Explain about the multi refort stokers with a heat sketch.	1	2	7
	D).	Explain about the types of dust collectors with a heat sketch.	1	2	/
		UNIT-II			
3	9)	Describe briefly the layout of a diesel engine power plant	2	2	7
	b).	Write a note on fuel system of diesel engine power plant	2	2	7
		OR	-	-	
		What do you understand by an open cycle gas turbine plant? List out its			
4.	a).	advantages over closed cycle plant.	2	2	7
	b).	Why is power generation by gas turbines attractive?	2	2	7
		UNIT-III			
5.	a).	Explain about the different types of dams.	3	3	7
	b).	Definer un-off. List the fact ors which affect the run-off.	3	2	7
		OR			
6.	a).	Illustrate various elements of a hydro electric power plant?	3	2	7
	b).	Write short notes on storage and pond age?	3	2	7
		UNIT-IV			
7.	a).	Describe the working of a Fast Breeder reactor. What are its advantages?	4	2	7
	b).	What are the different radiation hazards? Explain some protection methods.	4	2	7
	1	OR			
8.	a).	What are the different fuels used in uclear reactors? Explain the need of breeding.	4	2	7

	b).	Explain with help of neat diagram the working of Boiling water reactor.	4	2	7
		UNIT-V			
9.	a).	What do you understand by power plant economics? Explain the fixed costs and operating costs of a power station.	5	3	7
	b).	Explain about the pollutants and other environmental effects caused by power plants.	5	3	7
		OR			
10.	a).	What is meant by load curve? What is its significance in power generation?	5	3	7
	b).	Define diversity factor and state the advantages of diversity factor in power system.	5	2	7
		CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-	MARI	KS	

