

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) UG ProgrammesCE,CSE,ECE,EEE,IT & ME are Accredited by NBA CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204

Estd:1980

Regulation: R20										
	ELECTRONICS	AND COMMUNIC	CATION	ENG	INEE	RING	G (H	onors)		
	SCHE (With e	ME OF INSTRUCT effect from 2020-21	TON & E admitted	XAN Batc	IINA' h onv	TION vards))			
Course Code Course Name			Year/ Sem	Cr	L	Т	Р	Int. Marks	Ext. Marks	Total Marks
B20ECH101	CMOS Digital IC	Design	II-II	4	3	1	0	30	70	100
B20ECH201	CPLD & FPGA A Applications	rchitectures and	III-I	4	3	1	0	30	70	100
B20ECH301	Algorithms for VI Automation	SI Design	III-II	4	3	1	0	30	70	100
B20ECH401	Design for Testabi	lity	IV-I	4	3	1	0	30	70	100
B20ECH501	Estd. 1980 *MOOCS-I		II-II to IV-II	2 2	-05					100
B20ECH601	*MOOCS-II		II-II to IV-II	2						100
			TOTAL	20	12	4	0	120	280	600

*Two MOOCS courses of any ELECTRONICS AND COMMUNICATION ENGINEERING related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 8 weeks (2 Credits) courses other than the courses offered need to be takenby prior information to the concern. These courses should be completed between II Year II Semester to IV Year II Semester

Co	de	Category	L	Т	Р	С	I.M	E.M	Exam		
B20EC	CH101	Honors	3	1		4	30	70	3 Hrs		
CMOS DIGITAL IC DESIGN											
(Honors Degree Course in ECE)											
Course Objectives:											
1.	1. Introduce about Pseudo NMOS Logic characteristics.										
2.	Expla	in combinationa	l and so	equentia	al MOS	logic circu	uits.				
3.	Elabo	rate the basic pri	inciple	s of Dy	namic lo	ogic circui	ts.				
4.	Expla	in elementary M	OS ser	nicondu	actor m	emory circ	uits.				
Course	e Outc	omes: After com	pletion	n of the	course,	the studen	nt will be able	e to			
S No					Outcor	ne			Knowledge		
5.110					Outcon	iic			level		
1.	Interp	ret Pseudo NMC	OS Log	ic chara	acteristi	cs.			K2		
2.	Analy	ze the operation	n and	constru	ction of	f combina	tional and se	equential MOS	K3		
	circui	ts.									
3.	Identi	fy the switching	action	of Dyn	amic Lo	ogic circui	ts.		K3		
4.	Analy	ze the elementar	y MO	S semic	onducto	or designs.			K3		
		/#/ Y	1								
		11 (A) (A)	11		SYLL	ABUS					
	Γ	AOS Design:	2	ENIC		CDIN	c cou	ECE			
UNIT	Г -I Е	Pseudo NMOS Logic - Inverter, Inverter threshold voltage, Gain at gate threshold									
(8Hr	s) v	voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, CMOS Gate									
	C	lesign, Power dis	ssipatio	on in CN	AOS.						
	(Combinational I	MOS I	Logic C	ircuits:						
UNIT	'- II I	ntroduction, MC)S logi	c circui	ts with	NMOS lo	ads, Primitiv	e CMOS logic g	gates – NOR		
(10H)	rs) d	k NAND gate,	AOI	and OI	A gate	s, CMOS	full adder,	CMOS transmi	ssion gates,		
		Designing with T	ransm	ission g	ates.						
	6		T	<u>C</u> !	4						
UNIT		equential MOS		f histol	IUS:	anta CD I	atah Clash	d latab and flin	flan sinovita		
(10H	rs)	Clashed SD L at	avior (of Dista	Die eien Z L stab	CMOS D	Latch, Clocke	a fatch and flip	flor		
	-	CIUCKEU SK La	.01,010	ckeu jr	Laten,	, CMOS D	laten, and et	ige inggered mp	э-пор.		
			<u>a</u>								
TINIT	TX 7	Dynamic Logic	Circui	ts:) T					
	-1V 1	ntroduction, Ba	ISIC PI	inciple	s of F	ass Trans	Sistor Circui	ts, voltage Bo	botstrapping,		
(10H)	rs) 2	synchronous dy	namic	pass ti		r circuits,	CMOS trai	ismission gate	logic, High		
	ľ	errormance Dyr	iainic (_IVIO5 (incuits.						
		1									
UNIT	-V		viemo	ries:							

(10Hr	rs) Introduction, Read-Only Memory (ROM) Circuits, Design of Row and Column Decoder,				
	Static Read-Write Memory (SRAM) Circuits- SRAM Operation Principles, SRAM Write				
	Circuitry, Dynamic Read-Write Memory (DRAM) Circuits.				
Text B	ooks:				
1.	Ken Martin, "Digital Integrated Circuit Design", Oxford University Press, 2011.				
2	Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design",				
۷.	TMH, 3rd Edition, 2011.				
Refere	nce Books:				
1	Ming-BO Lin, "Introduction to VLSI Systems: A Logic, Circuit and System Perspective",				
1.	CRC Press, 2011				
2	Jan M. Rabaey, AnanthaChandrakasan, BorivojeNikolic, "Digital Integrated Circuits - A				
Ζ.	Design Perspective", 2nd Edition, PHI.				
e-Reso	urces:				
1.	https://digitalsystemdesign.in/wp-content/uploads/2018/05/C-MOSkang.pdf				
2.	https://kgut.ac.ir/useruploads/1508315874150kru.pdf				

	Course Code: B20ECH101								
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R 20				
		II B. Tech II Semester MODEL QUESTION PAPER							
		CMOS DIGITAL IC DESIGN							
		(Honors Degree Course in ECE)							
Tim	e: 3 I	Irs	Μ	ax. M	arks:70				
		Answer ONE Question from EACH UNIT							
		All questions carry equal marks							
		Assume suitable data if necessary							
			CO	KL	Μ				
		UNIT-I							
1.	a).	Explain about Pseudo NMOS Logic Inverter.	1	2	7				
	b).	Explain i) Gain at gate threshold voltage ii) Transient response	1	2	7				
		OR							
2.	a).	Explain about Pseudo NMOS Rise time, Fall time characteristics.	1	2	7				
	b).	Explain CMOS Inverter gate design.	1	2	7				
		UNIT-II							
3.	a).	Briefly discuss about MOS logic circuits with NMOS loads.	2	2	7				
	b).	Describe the design of AOI and OIA gates.	2	3	7				
		OR							
4.	a).	Design a Full Adder circuit with the help of CMOS logic.	2	3	7				
	b).	Explain CMOS transmission gate along with characteristics.	2	2	7				
		Estd. 1980							
		UNIT-III							
5.	a).	Explain the Behavior of bistable elements.	2	2	7				
	b).	Explain about clocked SR Latch.	2	3	7				
		OR							
6.	a).	Explain about clocked JK Latch.	2	2	7				
	b).	Briefly discuss about behavior of edge triggered flip-flop.	2	3	7				
		UNIT-IV							
7.	a).	Discuss the basic principles of Pass Transistor Circuits.	3	2	7				
	b).	Explain about CMOS transmission gate logic.	3	2	7				
		OR							
8.	a).	Explain about Voltage Bootstrapping.	3	2	7				
	b).	Describe operation of High-performance Dynamic CMOS circuits.	3	3	7				
		UNIT-V							
9.	a).	Explain in detail about Dynamic Read-Write Memory (DRAM) Circuits	4	2	7				
	b).	Briefly describe Read-Only Memory (ROM) Circuits.	4	3	7				

		OR			
10.	a).	Explain in detail about Static Read-Write Memory (SRAM) Circuits.	4	2	7
	b).	Draw and explain Row and Column Decoder.	4	3	7
	С	O-COURSE OUTCOME KL-KNOWLEDGE LEVEL	M-MA	RKS	

	Code	Category	L	Т	Р	С	I.M	E.M	Exam			
B20	ECH20	1 Honors	3	1		4	30	70	3Hrs			
	CDI D AND EDCA ADCHITECTUDES AND ADDI ICATIONS											
		CPLD AND	FPGA AI	CHITI		$\frac{S \text{ AND A}}{S \text{ in ECE}}$	PPLICA	TIONS				
Cours	se Obiec	tives:	(HOIIO	JIS Degi	ee Course	: III ECE)						
1	Familia	rization of variou	is complex	progran	mable L	ogic devic	es of diff	erent families				
2.	To stud	v Field program	nable gate	arravs a	nd realiza	tion techn	iaues.					
3.	3. To study different case studies using one hot design methods.											
	10 5000			8								
Cours	se Outco	mes: After comp	letion of th	e course	, the stud	ent will be	able to					
S.No				Outc	ome				Knowledge			
									level			
1.	Outline	various architect	tures and d	evice tec	hnologies	s of PLDs.	, CPLDs	and FPGAs.	K2			
2.	Illustra	te the SRAM Pro	grammable	FPGAs			-		K2			
3.	Interpre	et Anti-Fuse Prog	rammed F	PGAs					K2			
4.	Build a	nd analyze the di	gital circui	ts using	various F	PGA class	ses		K4			
		-	0	0								
		A CHILD		SYI	LABUS		/					
UNI (10F	(T-I Irs) T-II I	Introduction, Sim Logic Arrays, Pi Logic; Complex XCR3064XL CP Field Programm Organization of	ple Progra ogrammab Programn LD. able Gate FPGAs, Fl	mmable le Array nable Lo Arrays: PGA Pro	Logic Dev Logic, Ogic Dev	evices – R Programm ices – An	ead Only hable Log rchitectur	Memories, H gic Devices/C e of Xilinx	Programmable Generic Array Cool Runner			
UNI (8H	Γ-III Irs)	SRAM Program	mable FP gramming '	GAs: Technolo	of FPGAs	, Applicat	cture, Th	PGAs.	2000, XC3000			
UNIT-IV (8Hrs) Anti-Fuse Programmed FPGAs: Introduction, Programming Technology, Device Architecture, The Actel ACT1, ACT2 an ACT3 Architectures.						[1, ACT2 and						
UNIT-V (8Hrs) Design Applications: A Fast Video Controller, A Position Tracker Controller, Designing Counters with ACT dev with the ACT Architecture Text Books:					ter for a evices, D	Robot M esigning	Ianipulator, Adders and	A Fast DMA Accumulators				
1.	Stephe Editio	en M. Trimberge n.	r, "Field P	rogramr	nable Ga	te Array	Fechnolo	gy", Springer	[·] International			

2.	Charles H. Roth Jr, Lizy Kurian John, "Digital Systems Design", Cengage Learning.
Refere	nce Books:
1.	John V. Oldfield, Richard C. Dorf, "Field Programmable Gate Arrays", Wiley India.
2	Pak K. Chan/Samiha Mourad, "Digital Design Using Field Programmable Gate Arrays", Pearson
2.	Low Price Edition

		Course (Code: B	20EC	H201
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R 20
		III B. Tech I Semester MODEL QUESTION PAPER			
		CPLD and FPGA Architectures and Application			
		(Honors Degree Course in ECE)			
Tir	ne: 3	Hrs	Max	. Mar	ks:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
	1	Assume suitable data if necessary		1	1
			CO	KL	Μ
		UNIT-I	<u> </u>		
1.	a).	What are complex programmable logic devices? Briefly outline salient	1	2	7
	Í	features of these devices and applications.			
	b).	Draw and explain the architecture of CPLD.	1	2	7
		OR			
2.	a).	Explain about parallel adder cell.	1	2	7
	b).	Draw and explain architecture of PLD.	1	2	7
		UNIT-II	<u> </u>		
3.	a).	Draw and explain the General Block diagram of FPGA	2	2	7
	b).	What are the Applications of FPGAs	2	2	7
		ENGOR FERING COLLEGE			
4.	a).	Discuss Speed performance of different FPGAs	2	2	7
	b).	With diagram explain I/O block of FPGA.	2	2	7
			<u> </u>		
		UNIT-III	<u> </u>		
5.	a).	Show how the Xilinx XC3000 CLB can provide a 1-bit adder-subtractor cell	2	2	7
		for a parallel adder.			
	b).	Explain about Parallel Adder Cell	2	2	7
		OR	<u> </u>		
6.	a).	What programming technologies are used in FPGA devices SRAM	2	2	7
	b).	Briefly explain about Serial Multiplier with Parallel Addition.	2	2	7
			<u> </u>		
		UNIT-IV			
7.	a).	Explain the ACT 2 and ACT 3 Logic Modules.	3	2	7
	b).	Explain the functional behavior of the Actel ACT 1 Logic Module.	3	2	7
		OR	<u> </u>		
8.	a).	Give examples of fuse link in an array logic for a CPLD	3	2	7
	b).	What are the salient features of ACTEL ACT1 and ACT2 FPGAs?	3	2	7
			<u> </u>		
		UNIT-V	<u> </u>		
9.	a).	Design a 4 bit Ripple counter using one-hot state machine.	3	4	7

	b).	Compare the ACTEL's Act-1,2,3 performance.	3	4	7	
		OR				
10.	a).	Explain about fast DMA controllers	3	4	7	
	b).	Briefly explain about Decade Counter.	3	4	7	
	CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-M					

Code		Category	L	Т	Р	С	I.M	E.M	Exam		
B20	ECH301	Honors	3	1		4	30	70	3 Hrs		
		·									
ALGORITHMS FOR VLSI DESIGN AUTOMATION											
	(Honors Degree Course in ECE)										
Cours	Course Objectives:										
1	Unders	tand the conce	epts of Ph	ysical I	Design P	rocess suc	ch as pa	rtitioning, Fl	oor planning,		
1.	Placement and Routing.										
2	Discuss	s the concepts of	of design o	ptimizat	ion algor	ithms and	their app	lication to pl	nysical design		
۷.	automation.										
3.	Under	stand the concep	ots of simu	lation an	d synthes	is in VLS	[Design]	Automation \cdot			
4.	Formul	ate CAD design	n problems	using al	gorithmic	methods					
Cours	se Outco	mes: After com	pletion of	the cours	se, the stu	dent will b	be able to				
S No				Out	20220				Knowledge		
9.1NU				Out	come				level		
1.	Interpre	et and formulate	the flow o	f VLSI I	Design fo	r any appl	ication. ·		K2		
2	Interpre	et the Methods f	for Combin	ational (Optimizat	ion Techn	iques		K2		
2	Interpre	et the algorithm	s for partit	ioning, 1	floor plan	ning, plac	ement an	d routing the	K)		
5	digital	designs at fronte	end level &	at back	end VLS	l Design le	evel.		K2		
1	Compa	re the various	scheduling	g algorit	hms , ar	al <mark>yzing a</mark>	nd s <mark>olv</mark> ir	ig the issues	K A		
4	related	to logic synthes	is & verifi	cation					Κ4		
5	Interpre	et the algorithm	s for partit	ioning, 1	floor plan	ning, plac	ement an	d routing the	K)		
5	FPGA	XCHIN						UL.	112		
		Estd. 1980			AUTU		ą				
				SY	LLABUS	5					
UNI	T-I P	RELIMINARI	ES: Introd	luction	to Desig	n Method	ologies,	Design Auto	mation tools,		
(10H	Irs) A	lgorithmic Grap	oh Theory,	Comput	ational co	mplexity,	Tractable	e and Intractal	ole problems.		
UNI	<mark>г.11</mark> G	eneral Purpos	e Methods	for Co	mbinatio	nal Optir	nization:	Backtracking	g, Branch and		
(10H	Irs) B	ound, Dynamic	e Programi	ning, In	nteger Li	near Prog	ramming	Local Search	ch, Simulated		
(101	A A	Annealing, Tabu search,									
	L	ayout Compac	tion, Plac	ement, l	Floor Pla	nning an	d Routir	g:Problems,	Concepts and		
UNIT	T-III A	lgorithms.									
(9H)	rs) M	IODELLING A	AND SIMU	ULATIO	DN: Gate	Level Mo	delling ar	d Simulation	, Switch level		
Modelling and Simulation.											
	1										
		OGIC SYNTH	IESIS AN	D VER	IFICAT	ON: Basi	c issues	and Termino	logy, Binary-		
UNIT	 IV	ecision diagram	is, Two-Le	vel logic	synthesi	.s					
(8H	rs)	IGH-LEVEL	SYNTHE	SIS:Har	dware N	Iodels, In	ternal re	presentation	of the input		
Ì	A	Igorithm, Alloc	ation, Ass	ignment	and Sch	eduling, S	ome Sch	eduling Algo	rithms, Some		
	as	spects of Assign	ment probl	lem, Hig	h-level T	ransforma	tions				

UNI	F-V PHYSICAL DESIGN AUTOMATION OF FPGAs: FPGA technologies, Physical Design
(8H)	rs) cycle for FPGAs, partitioning and Routing for segmented and staggered Models.
Text I	Books:
1	S.H. Gerez, "Algorithms for VLSI Design Automation", 1999, WILEY Student Edition, John
1.	Wiley & Sons (Asia) Pvt. Ltd.
r	Naveed Sherwani, "Algorithms for VLSI Physical Design Automation", 3rd Edition, 2005,
۷.	Springer International Edition.
Refer	ence Books:
1.	Hill & Peterson, "Computer Aided Logical Design with Emphasis on VLSI", 1993, Wiley.
C	Wayne Wolf, "Modern VLSI Design: Systems on silicon", 2nd ed., 1998, Pearson Education
2.	Asia.

		Course C	ode: E	320EC	H301
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R 20
		III B. Tech II Semester MODEL QUESTION PAPER			<u> </u>
		ALGORITHMS FOR VLSI DESIGN AUTOMATION			
		(Honors Degree Course in ECE)			
Tim	ne: 3 I	Hrs	Max	. Mar	ks:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary	-		
			CO	KL	Μ
		UNIT-I			
1.	a).	Explain about the most important entities in VLSI Design	1	2	7
	b).	Discuss about Breadth-first search algorithm with examples	1	2	7
		OR			
2.		Explain a design methodology based on top-down structural	1	2	14
		decomposition and bottom-up layout reconstruction with Y-chart.			
		UNIT-II			L
3.	a).	Explain about Simulated Annealing	2	2	7
	b).	Explain in detail about Genetic Algorithms.	2	2	7
		OR			
4.		Briefly describe the following (i)Local Search and (ii) Tabu search,	2	2	14
		Estd. 1980 AUTONOMOUS			
		UNIT-III			
5.		With an example explain how high level transformations can be carried	3	3	14
		out on Data Flow Graphs. What are the advantages and limitations?			
			2	2	-
6.	a).	Explain about gate level modelling with examples.	3	2	7
	D).	Explain about switch level modelling with example.	3	3	
		UNIT-IV Evaluin about Allocation Assignment and Scheduling of Algorithms in			
7.	a).	high-level synthesis	4	2	7
	b)	Explain about optimization issues in High-level synthesis	1	2	7
	0).	OR	-	4	/
		With an example explain how high level transformations can be carried			
8.		out on Data Flow Graphs. What are the advantages and limitations?	4	2	14
	1				
		UNIT-V			
9.	a).	Explain about Routing for segmented and staggered Models	5	2	7
<u> </u>	b).	Explain in detail about the design cycle of FPGA's	5	2	7

		OR			
10.	a).	Explain about various FPGA Technologies with necessary diagrams.	5	2	7
	b).	What are the various steps in the physical Design cycle of FPGA's?	5	2	7
		Explain.	5 2		/
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL			M-MARKS		

Code		Category	L	Т	Р	С	I.M	E.M	Exam	
B20	ECH401	Honors	3	1		4	30	70	3 Hrs	
DESIGN FOR TESTABILITY										
(Honors Degree Course in ECE)										
Cours	se Pre-Re	quisite(s)								
Switch	ing Theor	y and Logic Des	ign, VLSI E	Design						
Cours	e Object	ives:								
1.	To give	To give exposure on the Testing, Fault modelling.								
2.	To give	give exposure on Fault simulation and Testability measures.								
3.	. To give exposure on Built in Self-Test and Boundary Scan Test Instructions									
Cours	e Outcor	nes: After com	pletion of	the cours	se, the stu	dent will	be able to		1	
S.No				Onte	rome				Knowledge	
5.110		Outcome								
1.	. Illustrate the fundamentals of Testing								K3	
2	2 Interpret Logic and Fault Simulation							K3		
3	3 Describe the Testability of Combinational Circuits						K3			
4	4 Illustrate the concepts of Built in Self-Test							K3		
5	5 Interpret Boundary Scan Standards in Testing						K3			
	- K		/	SY	LLABUS	5				
	In	troduction to	Testing:	GIN	FEDI	NG C		GE		
UNI	Т-І Те	Testing Philosophy, Role of Testing, Digital and Analog VLSI Testing, Fault Modelling:								
(8 H	rs) D	Defects, Errors and Faults, Functional Versus Structural Testing, Levels of Fault Models,								
	Si	Single Stuck-at Fault - Fault Equivalence, Fault collapsing								
			<u></u>							
		Logic and Fault Simulation:								
	I-II S1	Simulation for Design Verification and Test Evaluation, Modelling Circuits for Simulation:								
(8 H	rs) M	Modelling levels and types of simulators, Algorithms for True-value Simulation: Compiled								
	co	de Simulation,	Event Driv	en Simt	llation.					
		atability Maa								
TINITT		restability Measures:								
	-111 S(SCUAP Controllability and Observability - Combinational SCUAP measures, High Level								
(101)		Design								
Design.										
Built-In Self-Test										
UNIT	$\mathbf{I} - \mathbf{IV} = \begin{bmatrix} \mathbf{D} \\ \mathbf{R} \end{bmatrix}$	Random Logic BIST: Definitions BIST Process Pattern Generation Built-In Logic Block								
(10 H	Irs) $\begin{bmatrix} \mathbf{R} \\ \mathbf{O} \end{bmatrix}$	Observers, Test-Per-Clock, Test-PerScan BIST Systems								
		costrois, restroi cioca, restroiscui bist systems.								
UNIT-V Boundary Scan Standard:										
(8 Hrs) System Configuration with Boundary Scan: TAP Controller and Port Boundary					arv Scan Test					
(011	-0, 0)	Stern Connigui	anon with	- Junual	y seun.		ionor and	· · · ···, Dound	my sour rost	

	Instructions, Boundary Scan Description Language: BDSL Description Components, Pin			
	Descriptions.			
Text l	Books:			
1.	M.L. Bushnell, V. D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed			
	Signal VLSI Circuits" Kluwer Academic Publishers.			
2.	P.K. Lala, "Digital Circuits Testing and Testability", Academic Press.			
Reference Books:				
1	M. Abramovici, M. A. Breuer and A.D Friedman, "Digital Systems and Testable Design", Jaico			
1.	Publishing House.			
e-Res	ources:			
1.	https://books.google.co.in/books?id=UTrtBwAAQBAJ&pg=PR7&source=gbs_selected_pages&c			
	ad=3#v=onepage&q&f=false			
2.	https://books.google.co.in/books?id=bw16LHRVH7IC&printsec=copyright&redir_esc=y#v=one			
	page&q&f=false			

		Course C	ode: B	20EC	H401
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		IV B. Tech I Semester MODEL QUESTION PAPER			
		DESIGN FOR TESTABILITY			
		(Honors Degree Course in ECE)			
Tin	ne: 3	Hrs.	Max	. Mar	ks:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary	1		
			CO	KL	Μ
		UNIT-I			
1	a).	Describe Digital and Analog VLSI testing.	1	2	7
	b).	Describe Functional Versus Structural Testing.	1	2	7
		OR			
2		Explain how Stuck-at Fault can be used to cover faults in a system.	1	3	14
		UNIT-II			
3		Discuss about modelling Circuits for Simulation.	2	2	14
		OR			
4		Explain the terms a) Compiled code Simulation. b) Event Driven Simulation		3	14
				5	17
		UNIT-III			
5		With neat diagrams, explain partial-scan design methods.		3	14
		OR			
6		Explain combinational SCOAP measures with a circuit example.	3	3	14
		UNIT-IV			
7		Explain about BIST process with necessary diagrams.	4	3	14
		OR			
8		Explain Test-Per Scan BIST System using D flip-flop mode and LFSR mode.	4	3	14
		UNIT-V			
9		Describe about boundary scan standard instructions.	5	2	14
		OR			
10		Explain about Boundary Scan Description Language components and pin	5	3	14
10		description.	5	5	14
		CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-N	MARK	S	