

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) UG Programmes CE,CSE,ECE,EEE,IT & ME are Accredited by NBA CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204

Estd:1980

Regula	tion: R20										
	ELECTRICAL & ELECTRONICS ENGINEERING (Honors)										
	SCHEME OF INSTRUCTION & EXAMINATION (With effect from 2020-21 admitted Batch onwards)										
Course Code	e Name	Year/ Sem	Cr	L	Т	Р	Int. Marks	Ext. Marks	Total Marks		
B20EEH101	Semiconductor Devices		II-II	4	3	1	0	30	70	100	
B20EEH201	EHV <mark>AC</mark> Transmis	sion	III-I	4	3	1	0	30	70	100	
B20EEH301	Power Quality Enl	nancement	ш-п	4	3	1	0	30	70	100	
B20EEH401	High Voltage Eng	ineering	UIV-IN	1410	3	1	0	30	70	100	
B20EEH501	*MOOCS-I		II-II to IV-II	2						100	
B20EEH601	*MOOCS-II		II-II to IV-II	2						100	
			TOTAL	20	12	4	0	120	280	600	

*Two MOOCS courses of any ELECTRICAL & ELECTRONICS ENGINEERING related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 8 weeks (2 Credits) courses other than the courses offered need to be taken by prior information to the concern. These courses should be completed between II Year II Semester to IV Year II Semester

Code	Category	L	Т	P	C	I.M	E.M	Exam
B20EEH101	Honors	3	1		4	30	70	3 Hrs
								·
		SEM	ICONDU	UCTOR	DEVICE	S		
		(Hor	nors Deg	ree cours	e in EEE)			
Course Obje	ectives: Students w							
1.	About the fundam	ental kno	wledge a	nd expos	e to the fie	eld of semic	onductor the	eory and
	devices.	1		· · · · · ·	D D'	1 1 1 1 17	n	
2. 3.	About the operation	-						
3. 4.	About the operation About the semicor					or MOSFE.	I and IGBI	•
4.								
	About the applica					a abla to		
Course Out	comes: After comp		lie course	, the stud				Knowledge
S.No			O	utcome				Level
1.	Explore the basic	propertie	s of semi	conducto	ors			K3
	Explore the basic properties of semiconductors.Analyze the principle, characteristics, driver and snubber circuits of power							
2.	diode and BJT.	-p,		.,			r po nor	K4
3.	Analyze semicon	ductor dev	vices like	MOSFE	T and IGE	BT.		K4
4	Illustrate the wor	king of v	arious ph	otonic d	evices like	photodetec	tors, solar-	W2
4.	cells.							K3
5.	Explore the semi	conductor	material	s used fo	r LED app	olications.		K3
			SYI	LLABUS	5			
	-							
	Introduction to S	emicond	uctor Ma	aterials				
	Types of semico	nductors,	Energy	Band for	ormation,	Electrons a	nd hole pa	ir generation,
UNIT-I	Direct and Indire	-	-					
(10Hrs)	carrier density,	1 0						
(======)	semiconductors,	-	-				U U	•
	relationship, Sem							1 0
	General expressio	n for curr	ent in a s	emicond	uctor, Ene	rgy bands u	nder electric	c fields.
		DIT						
	Power diode and			1				
	PN junction intro						-	
UNIT-II	PN junction electr					•	•	•
(10Hrs)	ideal diode equa			-				
	Switching charact					-	-	-
	and Safe operating				T, Snubbe	er design for	Power diod	le.
UNIT-III	IGBT, POWER				C 1 ·	.•	•, • •	
(10 Hrs)	Basic structures,	I-V chara	cteristics	, physics	of device	operation,	switching c	haracteristics,

	Safe operating area of IGBT and Power JFET & MOSFET - Drive circuits and Protection,
	Loss in switching devices.
	Optoelectronic Devices
UNIT-IV	Optoelectronic devices in daily life, optical absorption and band gap, introduction to solar
(10Hrs)	cells, efficiency of solar cells, Types of Photo detectors, Positive Intrinsic Negative (PIN)
	and avalanche photodetectors, photo detector metrics.
UNIT-V	Light Emitting Devices
(10Hrs)	Heterostructures, LEDs and their luminescent efficiency, double heterostructure and
(101113)	population inversion, diode lasers, LI characteristics and threshold current.
Text Books:	
1.	Semiconductor Device Fundamentals, R. F. Pierret, Prentice-Hall, 1996.
2.	Neamen, Donald A. Semiconductor physics and devices: basic principles. New York, NY:
Ζ.	McGraw-Hill, 2012.
Reference B	ooks:
1	Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India,
1	Third edition, New Delhi 2004.

		Course C	ode: E	B20EE	H101
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		II B. Tech. II Semester MODEL QUESTION PAPER			
		SEMICONDUCTOR DEVICES			
		(Honors Degree Course in EEE)			
Tim	ne: 3 H		Iax. M	larks:	70 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary	<u> </u>	*7*	
	-		CO	KL	Μ
		UNIT-I			
1.	a).	Define a hole in a semiconductor? Indicate how a hole contributes to	1	3	7
	1)	conduction pictorially?	1	2	-
	b).	Explain about Fermi level in intrinsic and extrinsic semiconductors?	1	3	7
•		OR	1	2	-
2.	a).	Derive the general expression for current in a semiconductor?	1	3	7
	b).	Find the concentration of holes and electrons in n-type silicon at 300	1	3	7
		0K, if the conductivity is 300 S/cm. Also find these values for p-type $\frac{1}{2}$			
		silicon. Given that for silicon at 300 0K, ni = 1.5 X 1010 /cm ³ , μ n =			
		$1300 \text{ cm} 2 / \text{V-s} \text{ and } \mu \text{p} = 500 \text{ cm} 2 / \text{V-s}.$			
		EN UNIT-II EDING COLLEGE			
3.			2	4	7
з.	a).	Write a brief note on snubber design used for power diode	2	4 4	7
	b).	Explain with neat diagram the structure and switching characteristics of BJT	2	4	7
		OR			
4.	a).	Analyze PN diode characteristics in forward bias and reverse bias	2	4	7
		regions			
	b).	Derive the ideal diode equation and analyze the I-V characteristics	2	4	7
		UNIT-III			
5.	a).	Analyze the switching characteristics of IGBT	3	4	7
	b).	Compare IGBT and MOSFET with its static and switching characteristics	3	4	7
	1	OR			
6.	a).	With neat circuits, analyze the turn-on and turn-off characteristics of MOSFET?	3	4	7
	b).	Analyze any gate protection circuit used for MOSFET?	3	4	7
		UNIT-IV			
7.	a).	Explain various optoelectronic devices used in daily life? Explain in	4	3	7

		brief any one optoelectronic device?			
	b).	Write a short note on PIN and avalanche photo detectors	4	3	7
		OR			
8.	a).	Explain the type of semiconductor used for solar cell and why its efficiency is low?	4	3	7
	b).	Explain the construction and working of photo detector and also explain its classification?	4	3	7
		UNIT-V			
9.	a).	Plot the characteristics of LED's	5	3	7
	b).	Write a brief note on laser diode and its applications	5	3	7
		OR			
10.	a).	Explain the double hetero structure LED's structure and working?	5	3	7
	b).	Write a brief note on LEDs and their luminescent efficiency,	5	3	7
	C	O-COURSE OUTCOME KL-KNOWLEDGE LEVEL N	A-MAH	RKS	

Co	de	Category	L	Т	P	C	I.M	E.M	Exam
B20EE	CH201	Honors	3	1		4	30	70	3 Hrs
					1			1	-
			EH	VAC TF	RANSMI	SSION			
			(Hon	ors Degr	ee course	e in EEE)			
Course	•	ves: Students wi							
1.		EHVAC transmi		-	_	meters.			
2.		conductor surfac		gradients	•				
3.		Corona and its e							
4.		he theory of trav							
5.	About 1	ightning phenor	nenon and	Lightnir	ng protec	tion.			
Course	Outcom	es: After compl	etion of th	ne course	, the stud	ent will be	e able to		
S.No				Outco	ome				Knowledge
	. .		<u> </u>	~					Level
1.		the parameters of				es.			K3
2.		voltage gradient		uctor sur	face.				K3
3.		te corona and it							K3
4.	•	e the travelling	-						K4
5.	Explor	e the lightning p	henomeno	on and pr	otection	against lig	htning.		K3
				CVI	LADIG				
				SYL	LABUS				
	T	NTRODUCTIO							
		ole of EHV A		ission	Standar	1 Transmi	ssion Va	ltages Do	wer handling
UNIT		apacity and lin						e	Ũ
(10 H		roperties of bun							
		ine and ground			-	-		-	
		ductances and c		-				r	
	I		<u> </u>						
T T N T T /T	S	URFACE VOL	TAGE G	RADIEN	NT ON C	CONDUC'	ΓORS		
UNIT	Si	ingle-conductor,	Two-cor	nductor b	oundle, N	laximum	surface v	oltage grad	ient for multi-
(10 H		onductor bundle	, Mangold	t formula	ae, Simpl	e Problem	s.		
	C	ORONA EFFE	CTS						
	C	orona loss forr	nulae – C	Charge v	oltage di	iagram, A	udio No	ise (AN): C	Seneration and
UNIT	-III C	haracteristics –	limits and	l measure	ements of	f AN– Re	lation bet	ween 1-phas	se and 3-phase
(10 H	rs) A	N Levels.							
	R	adio interferenc	e (RI) – c	orona pu	lses, Ger	eration an	d Proper	ies, Frequer	ncy spectrum –
	L	imits.							

UNIT	THEORY OF TRAVELLING WAVES					
(10 H	rs) line - Open end voltage, Bewley Lattice Diagram, Double exponential response, Response					
	to sinusoidal Excitation, Reflection and refraction of travelling waves, Simple problems.					
	LIGHTNING AND LIGHTNING PROTECTION					
	Lightning strokes to lines, Lightning stroke mechanism, General Principles of the					
UNIT	Lightning Protection Problem, Tower Footing Resistance, Insulator Flashover and					
(10 H	withstand voltage, Probability of occurrence of lightning stroke currents, Lightning					
(Arrestors and protective characteristics, Operating characteristics of Lightning arrestors,					
	Insulation Coordination Based on Lightning.					
Text Be	ooks:					
1	"EHVAC Transmission Engineering" by R. D. Begamudre, New Age International (p) Ltd, 3rd					
1.	Edition, 2008.					
2	"EHV-AC, HVDC Transmission and Distribution" by S. Rao, KHANNA publications, 3rd					
2.	edition, 2009.					

		Course C	ode: E	B20EE	H201
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		III B. Tech. I Semester MODEL QUESTION PAPER			
		EHVAC TRANSMISSION			
		(Honors Degree Course in EEE)			
Tim	e: 3 E	Answer ONE Question from EACH UNIT	lax. M	larks:	70 M
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	Μ
		UNIT-I			171
		Explain the power handling capability and line losses in EHV lines			
1.	a).	and discuss the useful conclusions from it.	1	3	7
	b)	Derive the expression for inductance of a Multi conductor line used in	1	3	7
	b).	EHV AC transmission line	I	3	/
		OR			
2.	a).	Explain different mechanical considerations that are taken in to	1	3	7
4.	<i>a)</i> .	account for transmission line performance.	1	5	'
	b).	Explain the effect of resistance of conductor in EHV AC transmission	1	3	7
		system.	-		
_		EN UNIT-II ERING COLLEGE			
3.	a).	Explain surface voltage gradient on conductors in a bundle.	2	3	7
	b).	Derive the expression for voltage (charge voltage relation) of two	2	3	7
		conductor line.			
		OR			
4.	a).	Starting from the fundamentals derive the expression for potential relations for multi conductor lines.	2	3	7
		For a 400KV line, calculate the maximum surface voltage gradients on			
	b).	the center and outer phases in horizontal configuration at the maximum	2	3	7
	~).	operating voltage of 420KV, r.m.s line to line. The other dimensions	_	· ·	
		are $H = 13m$, $S = 11m$, $N = 2$, $r = 0.0159m$, $B = 0.45m$.			
-		UNIT-III	3	3	7
5.	a).	Explain in detail generation characteristics and limits of AN	3	3	7
	b).	Explain the generation and measurement of audio noise due to corona in EHV lines.			
		OR			
6.	a).	Discuss the Corona loss formulae.	3	3	7
	b).	The field strength on the surface of a sphere of 1 cm radius is equal to the corona inception gradient in air of 30 KV/cm. Find the charge on	3	3	7

		the sphere.			
		UNIT-IV			
7.	a).	Derive the differential equation and its solution for a travelling wave.	4	4	7
	b).	Explain about Bewley Lattice Diagram.	4	4	7
		OR			
8.	a).	Explain the double – exponential response of an open – ended line.	4	4	7
	b).	Derive the response to sinusoidal excitation of an open – ended line.	4	4	7
		UNIT-V			
9.	a).	Explain the general principles of the lightning protection problem.	5	3	7
	b).	It is necessary to obtain a tower footing resistance of 20ohms in a soil of resistivity 100phm -m using the three different types of electrodes are hemisphere, vertical driven rod and horizontal counterpoise. Take a radius of 1.25cm for rods and counterpoise and a depth of 0.5m for the counterpose. Calculate the required dimensions.	5	3	7
		OR			
10.	a).	Explain about lightning arresters and protective characteristics.	5	3	7
	b).	For a 750KV line, take $V_w = 3000$ KV, crest, travelling on the lin and $V_p = 1700$ KV. The line surge impedance is 3000hms. Calculate (a) the current flowing in the line before reaching the arrester (b) the current through the arrester (c) the value of arrester resistance for this condition and verify the reflection and refraction coefficients giving rise to the voltage and current conditions.	5	3	7

Coo	le	Category	L	Т	Р	С	I.M	E.M	Exam
B20EE	H301	Honors	3	1		4	30	70	3 Hrs
			POWER	-					
			(Hor	nors Deg	ree cours	e in EEE)			
	U	tives: Students							
1.		the significance			_	ment and s	standards		
2.		Passive Shunt		-					
3.		the Operation a							
4.		Active Series C							
5.		analysis and D							
Course	Outco	mes: After com	pletion of t	the cours	se, the stu	dent will	be able to		
Sl.no				Outc	ome				Knowledge Level
1.	Apply techni	the knowledge ques	of Power	Quality i	ssues to (explore an	d classify	mitigation	K3
2.		rate the Passive cement	Shunt and	Series C	Compensa	tors for p	ower qual	ity	K3
3.	Analy	ze the Active S	eries Comp	pensators	for mitig	gation of p	ower qua	lity issues	K4
4.	Analy	ze the topologie	es and oper	ation of	Active S	hunt Com	pensators		K4
5.	Analy	ze the working	of Unified	Power (Quality C	ompensate	ors		K4
				0.57		1			
				SY.	LLABUS)			
	TN	NTRODUCTIC							
UNIT (10 Hr	-I In C (s) st	atroduction, Sta lassification of andards and mo and monitoring.	te of Art mitigation	techniq	ues of p	ower qual	lity, State	e of Art on	Power Quality
	P	ASSIVE SHUN	T AND S	ERIES	COMPE	NSATIO	N		
UNIT-	II In	troduction, stat	e of art of	on passi	ve shunt	and serie	es compe	ensators, clas	ssification and
(10 Hr	rs) pr	rinciple of shun	t and serie	es comp	ensators,	Analysis	and Desi	gn of single	-phase passive
	sh	unt compensate	ors, Simple	Numeri	cal Probl	ems.			
UNIT- (10 Hr	III D (rs) O	CTIVE SHUN attroduction, State STACOM, A to peration and Construction gorithms), Anal	te of Art of Three-leg Voltation Three of I	on DSTA /SC bas OSTATC	ATCOMs ed three COMs (si	-phase thr ngle-phas	ee-wire	DSTATCOM	I, Principle of

UNIT (10 F	-	ACTIVE SERIES COMPENSATION Introduction, State of the Art on Active Series Compensators, Classification of Active Series Compensators, Principle of Operation and Control of Active Series Compensators- Synchronous reference frame theory-based control, Analysis and Design of Active Series Compensators					
		UNIFIED POWER QUALITY COMPENSATORS					
UNI. (10 H		Introduction, State of the Art on Unified Power Quality Compensators, Classification of Unified Power Quality Compensators, Principle of Operation and Control of Unified Power					
		Quality Compensators - Synchronous reference frame theory-based control, Analysis and Design of Unified Power Quality Compensators.					
Text l	Books	:					
1.		n Singh, Ambrish Chandra, Kamal Al-Haddad, "Power Quality Problems and Mitigation iniques" Wiley Publications, 2015.					
2.		er Quality Enhancement Using Custom Power Devices – Power Electronics and Power ems, Gerard Ledwich, Arindam Ghosh, Kluwer Academic Publishers, 1 st ed,2002.					
Refer	ence I	Books:					
1.		erstanding Power Quality Problems: Voltage Sags and Interruptions, Bollen M H J, First ion, IEEE Press; 2000.					
2.	e-res	source: Power Quality - Course (nptel.ac.in)					

		Course C	ode: E	320EE	H301
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		III B. Tech. II Semester MODEL QUESTION PAPER			
		POWER QUALITY ENHANCEMENT			
T!	2 T	(Honors Degree Course in EEE)	T N	larks:	70 14
1 111	e: 3 E	Answer ONE Question from EACH UNIT	1ax. IV	larks:	/U IVI
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	Μ
		UNIT-I			
1.	a).	Classify the general power quality problems and explain	1	3	7
	b).	Explain the objectives of power quality monitoring	1	3	7
		OR			
2.	a).	Classify the general mitigation techniques of power quality	1	3	7
	b).	Explain various terminologies that are defined to quantify power	1	3	7
	D).	quality problems	1	5	
		UNIT-II			
3.	a).	Explain the principle of operation of passive shunt compensation.	2	3	7
	b).	Illustrate the design of Shunt Compensators for Power Factor Correction	2	3	7
		Estd 1980 OR AUTONOMOUS			
4.	a).	Classify and explain the supply system based passive shunt	2	3	7
		compensation	_		
	b).	A single-phase load having $ZL=(4.0 + j1.0)$ pu is fed from an AC supply with an input AC voltage of 230V at 50 Hz and a base impedance of 4.15 Ω . It is to be realized as a unity power factor load on the AC supply system using a shunt connected lossless passive element (L or C). Calculate (a) the value of the compensator element (in farads or henries) and (b) equivalent resistance (in ohms) of the compensated load.	2	3	7
		UNIT-III			
5.	a).	Explain how reference current is generated using instantaneous PQ theory	3	4	7
	b).	Explain topology-based classification of DSTATCOM	3	4	7
		OR			
6.	a).	Explain the design procedure of a three phase three wire DSTATCOM	3	4	7
	b).	Explain the design procedure of DSTATCOM	3	4	7

		UNIT-IV			
7.	a).	Discuss the state of art of series active compensators	4	4	7
	b).	Explain synchronous reference frame based control strategy for DVR	4	4	7
		OR			
8.	a).	Classify different types of series active compensators	4	4	7
	b).	Explain the design procedure of DVR	4	4	7
		UNIT-V			
9.	a).	What are the advantages of UPQC compared to STATCOM and DVR	5	4	7
	b).	Explain the principle and operation of UPQC	5	4	7
		OR			
10.	a).	Explain the design procedure of a UPQC	5	4	7
	b).	Explain synchronous reference frame based control strategy for UPQC	5	4	7
	C	O-COURSE OUTCOME KL-KNOWLEDGE LEVEL	M-MAI	RKS	•

Cod	le	Category	L	Т	P	С	I.M	E.M	Exam
B20EEI	H401	Honors	3	1		4	30	70	3 Hrs
			HIGH	VOLTA	GE ENO	GINEERI	NG		
			(Hor	nors Deg	ree cours	e in EEE			
~									
	•	tives: Students		1.	•				
1.		t various types		-	-	-		tric field dis	stribution and
2.		utation in differe				-		dialactrics	
2. 3.		t the generation	1		0	· 1			
4.		ent methods of a			-				
5.		t the HV testing					onages a		
					- min upp				
Course	Outco	omes: After com	pletion of	the cours	se, the stu	dent will	be able to)	
Sl.no			•	Outo	come				Knowledge
									Level
1.	Apply	y the knowledge	of over v	oltages,	electric s	tress and	field con	figuration to	К3
	compute electric fields.							K 5	
2.		ore the breakd	own beha	viour of	f solid,	liquid ar	id gaseou	us dielectric	К3
2	mater		CTT: 1			1 1.			
3.	Illustrate the generation of High AC, DC & Impulse voltages and currents.Apply different methods to measure High AC, DC & Impulse voltages and					K3			
4.	currer		loas to m	easure F	lign AC.	, DC &	impulse v	voltages and	K3
5.		yse the different	electrical	apparatu	s used in	HV engi	neering a	nd industrial	
5.		cations.	eneeuneun	appulate	b ubeu m	iii ongi	neering u	ing inggotha	K4
	11								I
				SY	LLABUS	5			
	I	NTRODUCTIO	ON TO HI	GH VO	LTAGE	ENGINE	ERING		
	Electric Field Stresses - Uniform and non-uniform field configuration of								
UNIT	Estimation and control of electric Stress – Numerical methods for electric							electric field	
(10Hr	rs) computation.								
	Over voltages in power systems:						1		
	Causes of over voltages and its effects on power system – Lightning, switchir other abnormal conditions, Corona and its effects							ng surges and	
	0		manuons, C		nu ns ell	CUIS			
	R	REAK DOWN	PHENON	MENON	FOR IT	NIFORM	FIELDS	S IN GASEO	US, LIOUID
UNIT-	BREAK DOWN PHENOMENON FOR UNIFORM FIELDS IN GASEOUS, LIQUII 1-II AND SOLID INSULATION								
(10Hr		bases as insulatir			n process	– Ionizat	ion proce	ss – Townsen	d's criteria of
		reakdown in gas	-		-		-		

	Breakdown in pure and commercial liquid - Intrinsic breakdown - Electromechanical					
	breakdown – Thermal breakdown –Breakdown of solid dielectrics in practice.					
	GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS					
UNIT-I	Generation of High DC voltages: Rectifiers, voltage multipliers, Van de graf generators:					
(10Hrs	generation of high impulse voltages: single and multistage Marx circuits- generation of					
(10111)	high AC voltages: cascaded transformers, resonant transformers and tesla coils.					
	Generation of high impulse currents – triggering and control of impulse generators.					
	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS					
UNIT-I	High resistance with series ammeter – dividers, resistance, capacitance and Mixed dividers					
(10Hrs) – peak voltmeter, Generating voltmeters – capacitance voltage transformers, Electrostatic					
	voltmeters - sphere gaps, measurement of high current - resistive shunts, Rogowski coil.					
	HIGH VOLTAGE ELECTRICAL APPARATUS					
UNIT-	Measurement of DC resistivity - Measurement of dielectric constant and loss factor -					
(10Hrs	Partial discharge measurements					
(101112	Industrial Applications to High Voltage Engineering Electro Static applications – Electro					
	static precipitator, Electro static separator, Electro static coating, pulsed power engineering					
Text Bo						
1.	M S Naidu and V Kamaraju, "High Voltage Engineering", Tata McGraw Hill, 3 rd Edition, 2004.					
2.	C L Wadhwa, "High Voltage Engineering", New Age Publications, 3 rd Edition, 2012.					
Referen	ce Books:					
1.	E Kuffel and W S Zaengl, "High Voltage Engineering Fundamentals", Pergamon Press, Oxford,					
1.	London, 1986.					
2.	E Kuffel and M Abdullah, "High Voltage Engineering", Pergamon Press, Oxford, 1970.					

		Course C	ode: H	320EE	H401
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		IV B. Tech. I Semester MODEL QUESTION PAPER			
		HIGH VOLTAGE ENGINEERING			
		(Honors Degree Course in EEE)			
Tim	e: 3 I		Iax. M	larks:	70 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
	1	Assume suitable data if necessary	CO	TZT	
			CO	KL	M
1		UNIT-I	1	2	-
1.	a).	Describe Finite Element Method for evaluation of field distribution.	1	3	7
	b).	Explain the mechanism of lighting stroke.	1	3	7
		OR			
2.	a).	What is Boundary Element Method? How does it differ from Charge Simulation Method?	1	3	7
	b).	Explain different theories of charge formation in clouds.	1	3	7
		UNIT-II			
3.	a).	State and explain Paschen's law. How do you account for the minimum voltage for breakdown under a given, p*d ^{°°} condition?	2	3	7
	b).	Explain thermal breakdown in solid dielectrics and its significance.	2	3	7
		Estd 1980 OR AUTONOMOUS			
4.	a).	Describe the current growth phenomenon in a gas subjected to uniform electric fields.	2	3	7
	b).	Explain the various breakdown theories involved in commercial liquids.	2	3	7
		UNIT-III			
5.	a).	Describe the principle of operation, application and limitations of a Van de Graf generator.	3	3	7
	b).	Derive the expressions for voltage ripple and regulation in a voltage multiplier circuit.	3	3	7
		OR			
6.	a).	Describe Cockroft- Walton voltage multiplier circuit in detail. Derive the expression for voltage regulation for an n-stage voltage multiplier.	3	3	7
	b).	How are damped high frequency oscillations obtained from a Tesla Coil?	3	3	7
		UNIT-IV			
7.	a).	Tabulate and explain the methods used for the measurement of high	4	3	7

		voltages and high currents.			
	b).	Explain how a sphere gap can be used to measure the peak value of voltages?	4	3	7
		OR			
8.	a).	What is CVT? Explain how CVT can be used for high voltage AC measurements.	4	3	7
	b).	Explain the constructional features and operation of a generating type voltmeters.	4	3	7
		UNIT-V			
9.	a).	Briefly explain how partial discharges in an insulation system can be detected and displayed	5	4	7
9.	a). b).		5	4	7 7
9.		detected and displayed			
9. 10.		detected and displayed Explain briefly about electro static coating.			

Estd. 1980

AUTONOMOUS