

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) UG Programmes CE, CSE, ECE, EEE, IT & ME are Accredited by NBA CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204

Estd:1980

Regula	tion: R20									
	IN	FORMATION TEC	HNOLO	GY (l	Hono	rs)				
	SCHEME OF INSTRUCTION & EXAMINATION (With effect from 2020-21 admitted Batch onwards)									
Course Code Cours		se Name	Year/ Sem	Cr	L	Т	Р	Int. Marks	Ext. Marks	Total Marks
B20ITH101	Advanced Data St	tructures	II-II	4	3	1	0	30	70	100
B20ITH201	Statistical Founda	tions for Data	III-I	4	3	1	0	30	70	100
B20ITH301	Mining Massive I	Data Sets	III-II	4	3	1	0	30	70	100
B20ITH401	Data Visualization	ENGINE	IV-I	4	3	1	0	30	70	100
B20ITH501	*MOOCS-1980		II-II to IV-II		US					100
B20ITH601 *MOOCS-II			II-II to IV-II	2						100
		,	TOTAL	20	12	4	0	120	280	600

*Two MOOCS courses of any INFORMATION TECHNOLOGY related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 8 weeks (2 Credits) courses other than the courses offered need to be taken by prior information to the concern. These courses should be completed between II Year II Semester to IV Year II Semester

C	Code	Category	L	Т	Р	С	I.M	E.M	Exam		
B20I	TH101	Honors	3	1	-	4	30	70	3 Hrs		
ADVANCED DATA STRUCTURES											
(Honors Degree Course in IT)											
Course Objectives: The objectives of the course are to impart:											
1.	Describe and implement a variety of advanced data structures (hash tables, priority queues, balanced and digital search trees).										
2.	Analyze the space and time complexity of the algorithms studied in the course.										
3.	Identify different solutions for a given problem; analyze advantages and disadvantages to different solutions.										
4.	Demons	trate an understa	nding of ex	xternal s	orting and	d string ma	atching al	gorithms.			
Cours	e Outcor	nes: After comp	letion of th	e course	, students	will be at	ble to				
S. No				Outco	me				Knowledge Level		
1	Be able search the	to understand a rees, heaps, and o	nd apply a dictionaries	symptot: 5.	ic analysi	s on data	structure	s, including	K2		
2	Understa string m	and the implem atch <mark>ing</mark> algorithi	entation ar ns.	nd comp	lexity an	alysis of	external	sorting and	K3		
3	Have an includin	idea of applicat g linear program	ions of dat ming a <mark>nd c</mark>	a structu luality, s	res and a string mat	lgorithms ching, gai	in a varie ne -theor	ety of areas, y.	K2		
	1		EV	SYI	LABUS	NG C	OLLE	GE			
UNI' (8 H	T-I Al (rs) Fu	gorithm Analy ymptotic Notat nctions, Open H	sis and H ions, Amc ashing, Clo	Hashing ortized A osed Has	Introduc Analysis hing, Ext	ction to (Textboo endible H	Algorithn k 2) Dio ashing (T	n Analysis, ctionaries, H ext Book 1 &	Step Counts, Iashing, Hash z Reference 1)		
	Pr	iority queues	and tour	nament	Trees	introducti	on to n	riority queu	es and ADT		
UNIT-II (8 Hrs)Priority queues and to implementation with list Binomial Queues: opera Reference 5) Tournament Trees: Win			ith lists, E operations s: Winner	Binary H s, Amort Trees an	leaps, op ized anal d Loser T	erations, lysis, Laz	Build He y Binomi tbook 2)	eap, perform al Queues ('	ance analysis, Textbook 2 &		
UNIT (8 H	C-III (rs) Ers) Ers) Ers) Ers	ficient Binary S VL Trees, Red Eight, Performan	earch Tre -Black Tr ce Analysis	es (Text rees and	book 1) d Splay	Trees: In	ntroductio	on, Operatio	ns, Maximum		
UNIT (8 H	 Height, Performance Analysis Multiway and Digital Search Trees and External Sorting (Text Book 1) UNIT-IV Multiway Search Trees: B-Trees and B+-Trees Digital Search Trees: Digital Search Trees, Binary Tries, PARTRICA and Multiway Tries, introduction, k-way merging, buffer handling, run generation, optimal merging of runs 							Iultiway Tries of runs			

LINI	String Matching (Text Book 3) String Operations, The Knuth-Morris-Pratt Algorithm, The							
	Boyer-Moore Algorithm, Standard Tries, Compressed Tries, Suffix Tries, The Huffman							
(о п	Coding Algorithm, The Longest Common Subsequence Problem (LCS)							
Text l	Books:							
1	undamentals of Data Structures in C: Second Edition, Horowitz, Sahani, Anderson Freed,							
1.	Jniversities Press.							
2	a Structures, Algorithms and Applications in C++, Second Edition, Sartaj Sahani, Universities							
۷.	ress.							
Refer	ence Books:							
1.	Data structures and Algorithm Analysis in C, 2nd edition, Mark Allen Weiss, Pearson							
2	Introduction to Algorithms", T. Cormen, R.Rivest, C. Stein, C. Leiserson, PHI publication, Second							
۷.	Edition, 004, ISBN 81-203-2141-3.							
3.	Data Structures, a Pseudo code Approach, Richard F Gilberg, Behrouz A Forouzan, Cengage.							

Г

		Course C	ode: E	B20ITI	H101
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		II B.Tech. II Semester MODEL QUESTION PAPER		•	
		ADVANCED DATA STRUCTURES			
		(Honors Degree course in IT)			
Tin	ne: 3]	Hrs	Max	. Marl	s:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
	•	Assume suitable data if necessary			
			CO	KL	Μ
		UNIT-I			
1.	a).	Identify the basic requirements to achieve good Hashing mechanism	1	2	7
	b).	Apply Following elements 76, 40, 48, 05, 55 to inserted into an empty	1	3	7
		hash table with hash function $f(x) = x\%$ 7 for quadratic probing.	-	Ŭ	,
		OR			
		Explain the following overflow handling techniques with suitable			
2.		examples?	1	2	14
		(i) Open Addressing.	-	_	
		(ii) Chaining.			
	_				
	_	UNIT-II			
3.	a).	Construct the min and max priority queue with the following elements 20,10,5,18,6,12,14,4 and 22	1	3	7
	b).	Construct a binary heap with the following data 150, 110, 90, 80, 70, 100, 180	1	3	7
		OR			
		Show the result of constructing a binomial heap using the following			
4.	a).	elements 9, 11, 1, 13, 5, 4, 7, 14, 2, 8, 6, 3, 10, 12, and 15 one at a time,	1	3	7
		into an initially empty binomial heap.			
	b)	Show the resultant Binomial heap after perform delete minimum element	1	3	7
	0).	and reconstruct the binomial heap	-	5	'
		UNIT-III			
		Create an AVL Tree using the following data entered as a sequence set.			
5.	a).	Show the balance factors in the resulting tree: 13, 22, 6, 9, 32, 55, 79, 65,	1	3	7
		70			
	b).	Insert 42, 43, 46 and 49 in the above constructed AVL tree and show a	1	3	7
		balanced AVL Tree.	•		<u> </u>
		OR			
6.	a).	Create a Red-Black tree by inserting the following sequence of numbers 8, 18, 5, 15, 17, 25, 40 and 80.	1	3	7
	b).	Explain the operations of Splay tree with an examples	1	2	7

		UNIT-IV			
7.	a).	Explain the insertion operation in B+ tree with suitable example?	2	2	7
	b).	Explain K-Way merging with suitable example?	2	2	7
		OR			
8.	a).	Explain the insertion, deletion and search operations on Digital Search Trees with an example?	2	2	7
	b).	Briefly explain the construction of Multi-way tries with an example?	2	2	7
		UNIT-V			
9.	a).	Explain working principal of Knuth Morris Pratt algorithm with example.	3	2	7
	b).	Suppose we have the weights q1=22, q2=5, q3=11, q4=19, q5=2, q6=11, q7=25 and q8=5. Write the step by step process to construct the Huffman tree?	3	3	7
		OR			
10.	a).	Illustrate Boyers Moore algorithm with an example	3	3	7
	b).	Discuss about standard tries, Compressed tries and suffix tries with an examples	3	3	7
		CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-	MARF	KS	

C	ode	Category	L	Т	Р	С	I.M	E.M	Exam	
B20I	ГН201	Honors	3	1		4	30	70	3 Hrs.	
		STAT	ISTICAL I	FOUND	ATIONS	FOR DA	TA SCI	ENCE		
(Honors Degree course in IT)										
Cours	se Obj	ectives:								
The co	The course will introduce the fundamental concepts of probability and statistics required for a program in									
data se	data science									
~										
Cours	se Out	comes: After com	pletion of	the cours	se, the stu	dent will	be able to			
S.No				Outo	come				Knowledge Level	
1	Use th	ne probability and	statistical	concepts	in the fie	eld of data	science.		K3	
2	Empl	by the techniques	and metho	ds relate	ed to the a	area of dat	ta science	in variety of	V2	
2	applic	cations.							K.J	
3	Apply	logical thinking	to understa	nd and s	solve the p	oroblem ir	ontext.		K3	
4	Explo science	re statistical lear ce, industry and so	ning metho ociety.	ods and	their app	lication to	o modern	problems in	К3	
5	Build	analytics pipeline	es for regre	ssion pro	oblems an	d classific	ation pro	blems	K3	
			\$\ \			/ -				
			E)	S	YLLABU	IS				
UNI	T-I	Basics of Data S statistics and opt	cience: Int	roductic from a c	on, Typol lata scier	ogy of pr ace perspe	oblems, I ective, Str	mportance or ructured thin	f linear algebra, king for solving	
(12 H	Irs)	data science problems.								
		Probability, Stat	istics and	Randor	n Proces	ses, Prob	ability th	eory and a	kioms, Random	
UNI	Г-II	variables, Proba	ability dis	tribution	ns and	density	functions	s, Expectati	ons, moments,	
(10H	Hrs)	characteristic fur	nction, Cov	variance	and cor	relation.	Statistics	and samplin	ng distributions,	
		Hypothesis testin	g of means	, proport	tions, vari	ances, Ch	i-Square	test and Conf	idence intervals.	
UNIT	-III	Correlation func	tions- Auto	ocorrelat	tion and	Cross cor	relation, 1	Probabilistic	formulations of	
(14H	rs)	prediction probl	lems, Plug	-in esti	mators, e		risk min	imization, L	inear threshold	
		functions, Risk t	ounds, Col	ncentrati	on mequa	unties, Rad	lemacher	averages.		
	I	Linear Regressi	n Regula	rization	and line	ar model	selection	Featura cal	ection methods	
UNI	r-IV	Cross-Validation	Game-th	eoretic	formulati	ons of pr	ediction	problems Hi	gh dimensional	
(12Hrs)		(x) methods Lasso Ridge Regression Dimensionality reduction Minimax strategies for log							rategies for log	
(loss. linear loss a	and Ouadra	tic loss.	,			,		
		,								
UNI	Г-V	Neural networks	: Stochasti	ic gradie	ent desce	nt, Combi	natorial o	limensions a	nd Rademacher	
(12H	Irs)	averages, Recurr	ent neural	network	s-Vanila a	and Multil	ayer RNN	ls.		

Text Bo	oks:
1	Bendat, J. S. and A. G. Piersol. Random Data: Analysis and Measurement Procedures. 4th
1.	Edition. John Wiley & Sons, Inc., NY, USA, 2010.
2.	Montgomery, D. C. and G. C. Runger. Applied Statistics and Probability for Engineers. 5th
	Edition. John Wiley & Sons, Inc., NY, USA, 2011.
3.	James, G., Witten, D., Hastie, T., Tibshirani, R. An Introduction to Statistical Learning with
	Applications in R, Springer, 2013.
Referen	ce Books:
1	Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning: Data Mining,
1.	Inference, and Prediction, Second Edition, Springer, 2009.
2	S. C. Gupta and V. K. Kapoor: Fundamentals of Mathematical Statistics, First edition 1970, S
۷.	Chand & Son.
2	Jianqing Fan, Ruze Li, Cun-Hui Zhang and hui Zou: Statistical Foundations of Data
3.	Science.First edition published 2020.

	Course Code: B20ITH201									
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)]	R20					
		III B.Tech. I Semester MODEL QUESTION PAPER								
		STATISTICAL FOUNDATIONS FOR DATA SCIENCE								
		(Honors Degree course in IT)								
Tin	ne: 3]	Hrs	Max.	Mark	ks:70					
		Answer ONE Question from EACH UNIT								
		All questions carry equal marks								
		Assume suitable data if necessary								
		CO	KL	Μ						
		UNIT–I								
1.	a).	Define Data Science and explain typology of the problems	1	2	7					
	b).	Write the Importance of linear algebra in data science	1	3	7					
		OR								
2.		Explain about Structural thinking for solving data science problems.	1	3	14					
		UNIT–II								
		Define the following								
3.	a).	i)Probability ii) Moment generating function	2	2	7					
		iii) Covariance and iv) Expectation								
		A sample of size 400 was drawn and the sample mean was found to be 99.								
	b).	Test whether this sample could have come from a normal population with	2	3	7					
		mean 100 and standard deviation 8 at 5% level of significance.								
		Estd. 1980 ORAUTONOMOUS								
		Fit a Poisson distribution to the following data and write the goodness of fit								
4.		X: 0 1 2 3 4	2	3	14					
		F: 109 65 22 3 1		<u> </u>						
				<u> </u>						
		UNIT-III		<u> </u>						
5.	a).	Explain about auto and cross correlation functions	3	3	7					
	b).	Define Rademacher average and discuss its structural properties	3	2	7					
		OR								
6.		Discuss the following concentration inequalities	3	3	14					
		i)Markov's, i)Chebyshev								
		UNIT-IV								
_		What is Cross-Validation and discuss the following		•						
7.		1) K-fold Validation 11) Leave-One-Out Cross- Validation 111) Repeated	4	2	14					
		K-Told Cross-Validation	<u> </u>	──						
			<u> </u>	<u> </u>						
8.	a).	Prove that Ridge regression estimator is equal to $\beta_{\lambda} = X^{\prime} [XX^{\prime} + \lambda I]Y$ and	4	3	7					
	• • •	the fitted value of Y at X is $\hat{y} = x^T \widehat{\beta_{\lambda}} = x^T X^T [XX^T + \lambda I]^{-1} Y$								

	b)	Explain about linear regression and regularization technique of weight		1	3	7
	D).	delay.		4	5	
		UNIT–V				
9.		Discuss about Stochastic gradient descent methods		5	3	14
		OR				
10		Discuss the following concepts		5	3	14
10.		i) Rademacher averages, ii) Vanila Recurrent neural networks.		5	3	14
	(CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL	M-M.	ARK	S	

C	ode	Category	L	Т	Р	С	I.M	E.M	Exam		
B20ITH30		Honors	3	1		4	30	70	3 Hrs.		
									·		
MINING MASSIVE DATA SETS											
(Honors Degree Course in IT)											
Cours	Course Objectives:										
1.	1. The course will discuss data mining and machine learning algorithms for analyzing very large amounts of data.										
Cours	se Outo	omes: by the end	l of this cou	irse stud	ents can	able to					
S.No				Outco	ome				Knowledge Level		
1.	Under	MapReduce	K2								
2.	Explo	re different appro	aches for f	inding si	imilar ite	ms.			K4		
3.	Outlin	e different minin	g techniqu	es to mir	ne data st	reams.			K3		
4.	Sumn	arize various apr	proaches fo	r finding	frequent	item sets.			K3		
5.	Illustr	ate various dimer	nsionality r	eduction	techniqu	es on mas	sive data		K3		
		Action					7 8				
				SY	LLABUS	5					
UNI	T-I	Data Mining: D	ata Mining	g. Statist	ical Lim	its on Data	a Mining	, MapReduce	e: Distributed		
(10F	Irs)	File Systems, Ma	pReduce, A	Algorith	ns Using	MapRedu	ce, Exten	sions to Mar	Reduce.		
	,		Ē	UGIN	IEER	ING C	ÓLLI	EGE			
UNI	T-II	Finding Similar	Items: Ar	plicatio	ns of Ne	ar-Neighb	or Search	, Shingling	of Documents,		
(10 H	Hrs)	Distance Measure	es, Theory	of Local	ity-Senst	ive Function	ons, Appl	lications of L	SH Hashing.		
	,		, ,		5		, 11		C		
UNI7 (10 I	ſ-III Hrs)	Mining Data Str Link Analysis: F Authorities.	reams: Stre PageRank,	eam Dat Efficien	a Model, t Compu	Sampling tational of	Data in f PageRa	Streams, Filt nk, Link Sp	ering Streams, am, Hubs and		
UNI7 (10 I	Γ-IV Hrs)	Frequent Item Limited- Pass Al Algorithm, CURI	sets: Ma gorithms, E Algorithr	rket-Bas Clusterin n	ed Mod	el, Marke luction, H	et Based	and A-Pric al Clustering	ori Algorithm, and K-means		
UNI (10 I	T-V Irs)	Dimensionality I CUR Decompo Perceptrons, SVN	Reductions sition, La 1's, Neares	Eigenv rge-Scal t Neight	alues and e Mach pors.	Eigenvec ine Lear	tors, Prin ning: M	cipal-Compo achine Lea	onent Analysis, rning Model,		
Texth	ooks:										
	Jure I	eskovec. Anand	Rajaraman	. Jefferv	D. ULL	man. Mini	ing of Ma	assive Datase	ets. Cambridge		
1.	Unive	rsity Press, 2014.		,	ULL	, 1,111			, cantonage		
2.	Patter	n Recognition a	nd Machin	e Learn	ing. Chri	stopher B	sishop. S	pringer-Verla	ag New York.		

	2006.						
Refer	Reference Books:						
1.	Machine Learning: A Probabilistic Perspective. Kevin Murphy. MIT Press. 2012						
n	The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie,						
Ζ.	Robert Tibshirani, Jerome Friedman. Springer. 2013						
e-Res	ources						
1.	https://www.edx.org/course/mining-massive-datasets						
2	https://www.cambridge.org/core/books/mining-of-						
2.	massivedatasets/C1B37BA2CBB8361B94FDD1C6F4E47922						

		Course Co	ode: B	20ITH	I301						
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)]	R20						
		III B.Tech. II Semester MODEL QUESTION PAPER									
		MINING MASSIVE DATA SETS									
		(Honors Degree course in IT)									
Tin	1e: 3]	Hrs	Max.	Mark	s:70						
		Answer ONE Question from EACH UNIT									
		All questions carry equal marks									
		Assume suitable data if necessary									
		UNIT–I									
1.	a).	Define Data mining? Explain statistical limits on data mining?	1	2	7						
	b).	Explain Distributed file system of MapReduce	1	2	7						
		OR									
2.	a).	Explain the details of execution of a MapReduce program.	1	2	7						
	b).	How to use MapReduce program for relational algebra operations	1	2	7						
		UNIT-II									
3.	a).	Describe similarity of documents	2	2	6						
	b)	Explain the following shingling of documents	2	2	8						
	D).	1. K-shingles 2. Hashing shingles	2	2	0						
		OR									
4.	a).	Explain Euclidean distance, Cosine distance	2	2	7						
	b).	Describe applications of Locality-Sensitive-Hashing	2	3	7						
		UNIT–III									
5.	a).	Explain data-stream-management system with neat diagram	3	3	6						
	b).	Describe the Bloom Filter? Explain Analysis of Bloom Filtering	3	3	8						
		OR									
6.	a).	Explain Link analysis in Data mining	3	3	7						
	b).	Explain how to compute Page Rank efficiently	3	3	7						
		UNIT-IV									
7.	a).	Explain Apriori algorithm with an example	4	3	7						
	b).	Explain limited pass simple, randomized algorithm	4	3	7						
		OR									
8.	a).	Explain Hierarchical clustering	4	2	7						
	b).	Explain CURE Algorithm	4	2	7						
		UNIT–V									
9.	a).	Describe Eigen values and Eigenvectors of Symmetric Matrices	5	2	7						
	b).	Explain Principal-Component Analysis	5	2	7						

		OR			
10.	a).	Explain CUR Decomposition	5	2	7
	b).	Explain un-supervised machine learning models	5	2	7
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-MARKS					

Code		Category	L	Т	Р	С	I.M	E.M	Exam		
B20ITH40		Honors	3	1		4	30	70	3 Hrs.		
		·									
			DA	ATA VI	SUALIZ	ATION					
			(Ho	nors De	gree Cou	rse in IT)					
Cour	se Obje	ctives:									
1.	The ma large d	main objective of this course is to make it easier to identify patterns, trends and outliers in e data sets									
Cour	se Outo	omes									
S. No				Outco	ome				Knowledge Level		
1.	Under	stand basics of I	Data Visual	ization					K2		
2.	Implei	nent visualizatio	on of distrib	outions					K3		
3.	Write	programs on vis	ualization o	of time s	eries, pro	portions &	& associa	tion	K3		
4.	Apply	visualization on	Trends an	d uncerta	ainty				K3		
5.	Explai	n principles of p	roportions				_		K3		
		10 miles					7				
				SY	LLABUS	5					
UN] (10F	(T-I (Irs) 5 1 1	Aesthetics, Aesthetics and Types of Data, Scales Map Data Values onto Aesthetics, Coordinate Systems and Axes- Cartesian Coordinates, Nonlinear Axes, Coordinate Systems with Curved Axes, Color Scales-Color as a Tool to Distinguish, Color to Represent Data Values, Color as a Tool to Highlight, Directory of Visualization Amounts, Distributions, Proportions, x–y relationships, Geospatial Data									
UNIT-II (10 Hrs)VISUALIZING DISTRIBUTIONS: Visualizing Amounts-Bar Plots, O Stacked Bars, Dot Plots and Heat-maps, Visualizing Distributions: His Density Plots- Visualizing a Single Distribution, Visualizing Multiple Distrib Same Time, Visualizing Distributions: Empirical Cumulative Distribution F Q-Q Plots-Empirical Cumulative Distribution Functions, Highly Skewed D Quantile Plots, Visualizing Many Distributions at Once-Visualizing Distrib the Vertical Axis, Visualizing Distributions Along the Horizontal Axis						Grouped and stograms and ibutions at the Functions and Distributions, butions Along					
	T		ASSOCT	ΤΙΛΝΙ	Vienel	izina Dec	ortiona	A Case for	Dia Chanta A		
UNI7 (10]	(F-III I Hrs) I (Visualizing Associations: Visualizing Proportions- A Case for Pie Charts, A Case for Side-by-Side Bars, A Case for Stacked Bars and Stacked Densities, Visualizing II Proportions Separately as Parts of the Total , Visualizing Nested Proportions- Nested Proportions Gone Wrong, Mosaic Plots and Tree-maps, Nested Pies ,Parallel Sets. Visualizing Associations Among Two or More Quantitative Variables-Scatter plots, Correlograms, Dimension Reduction, Paired Data. 									

UNIT (10 F	VISUALIZING TIME SERIES & UNCERTIANITY: Visualizing Time Series and Other Functions of an Independent Variable-Individual Time Series , Multiple Time Series and Dose– Response Curves, Time Series of Two or More Response Variables , Visualizing Uncertainty-Framing Probabilities as Frequencies, Visualizing the Uncertainty of Point Estimates, Visualizing the Uncertainty of Curve Fits, Hypothetical Outcome Plots							
	PRINCIPLE OF PROPORTIONAL INK: The Principle of Proportional Ink-							
UNI	Visualizations Along Linear Axes, Visualizations Along Logarithmic Axes, Direct Area							
(10 H	Visualizations, Handling Overlapping Points Partial Transparency and Jittering,							
	2DHistograms, Contour Lines.							
Textb	Textbooks:							
1	Claus Wilke, "Fundamentals of Data Visualization: A Primer on Making Informative and							
1.	Compelling Figures", 1st edition, O'Reilly Media Inc, 2019.							
2	OssamaEmbarak, Data Analysis and Visualization Using Python: Analyze Data to Create							
۷.	Visualizations for BI Systems, Apress, 2018							
Reference Books:								
1.	Tony Fischetti, Brett Lantz, R: Data Analysis and Visualization, O'Reilly, 2016							

		Course	Code:	B20IT	H401
				R20	
		DATA VISUALIZATION			
		(Honors Degree course in IT)			
Tim	e: 3 H	Irs. N	Aax. M	larks:	70 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary	~ ~		
			CO	KL	M
	\	UNIT-I			
1.	a).	How Data-Mapping Data onto Aesthetics	1	2	7
	b).	How Cartesian coordinates, and nonlinear axes used for Data Visualization	1	2	7
		OR			
2.	a).	Explain how color can be used to represent data values and tool to highlight	1	3	7
	b).	Explain Visualizing amounts	1	2	7
3.	a).	How to visualize multiple distributions at the same time	2	3	7
	b).	Explain empirical and highly skewed distributions	2	2	7
		OR OR			
4.	a).	Explain how visualizing distributions in vertical and horizontal axis	2	2	7
	b).	Explain visualization of distributions by Histograms and Density-plots	2	2	7
		UNIT-III			
5.	a).	Explain the case where side-by-side Bars are suitable than pie charts	3	3	7
	b).	Explain Visualization of Nested Proportions- Mosaic Plots and Tree maps	3	2	7
		OR			
6.	a).	Explain Nested Pies and parallel sets	3	2	7
	b).	Explain Visualization of Associations Among Two or More Quantitative Variables	3	2	7
		UNIT-IV			
7.	a).	Explain how to framing probabilities as frequencies	4	3	7
	b).	Explain Visualizing the Uncertainty of Curve Fits	4	2	7
		OR			

8.	a).	Define Detrending? Explain Time Series Decomposition	4	3	7
	b).	Explain how to visualize response curves	4	2	7
		UNIT-V			
0	a).	What is the principle of proportional ink? Explain Visualization along	5	2	7
		Linear Axes?	5		/
	b).	Explain visualization along Logarithmic Axes	5	2	7
		OR			
10.	a).	Explain Partial Transparency and Jittering	5	2	7
	b).	How to Use 2D Histograms, Contour Lines in visualization	5	2	7
	C	O-COURSE OUTCOME KL-KNOWLEDGE LEVEL M	1-MAF	RKS	-

