

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) UG Programmes CE,CSE,ECE,EEE,IT & ME are Accredited by NBA CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204

Regulation: R20 MECHANICAL ENGINEERING (Honors) SCHEME OF INSTRUCTION & EXAMINATION (With effect from 2020-21 admitted Batch onwards) Course Year/ Int. Ext. **Total** Р **Course Name** Cr L Т Code Sem Marks Marks Alternative Fuels and Energy 4 3 0 30 70 B20MEH101 II-II 1 100 Systems 1 B20MEH201 Micro-Electro Mechanical Systems III-I 4 3 0 30 70 100 3 1 0 30 70 B20MEH301 Mechanical Vibrations III-II 4 100 IV-I 4 3 B20MEH401 Product Design and Development 1 0 30 70 100 II-II to B20MEH501 *MOOCS-I 2 --100 ----__ --IV-II II-II to B20MEH601 *MOOCS-II 2 100 ------__ __ IV-II TOTAL 20 12 4 0 120 280 600

*Two MOOCS courses of any MECHANICAL ENGINEERING related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 8 weeks (2 Credits) courses other than the courses offered need to be taken by prior information to the concern. These courses should be completed between II Year II Semester to IV Year II Semester

(Code	Category	L	Т	P	С	I.M	E.M	Exam
B20 N	AEH101	Honors	3	1		4	30	70	3 Hrs.
		ALTI	ERNATIV	E FUEI	LS AND	ENERGY	SYSTEM	MS	
			(Ho	nors Deg	gree Cour	se in ME)		
Cours	se Obje	ctives:							
1.		part the knowle	-						on engine and
		ive drive system							
2.	-	art the knowledg		-		e	s, methano	ol, ethanol, S	VO, Bio diesel
		ious aspects of e		-					
3.	To stuc	y the use of vari	ous gaseou	s fuels a	nd hydro	gen for in	ternal con	ubustion engi	ne application
Cours	se Outc	omes							
S.No				Outco	ome				Knowledge
1				C T -	- 1		·	1	Level
1.		Describe need for alternative fuels for Internal combustion engine and alternative						K2	
	drive systems for automobiles, principle of solar energy collection, construction								
2	of photo voltaic cells						K2		
2.		Explain various properties, methods of production of Bio gas, methanol, ethanol, SVO, Bio diesel							K2
3.		ate the use of	f hydroge	n and	various	03500115	fuels re	aformulated	K3
5.		ntional fuels &							K5
		ation.std. 1980		ernative	AUTO	NONO	US	alon engine	
4.		n the various asp		ctrical a	nd Hybrid	1 vehicles			K2
	I	I			- J-				
				SY	LLABU	S			
]	ntroduction: T	ypes of e	nergy s	ources, t	heir avai	lability, n	eed of alter	mative energy
		ources, Noncon					-		
	t	rains. Scenario o	of convention	ional aut	to fuels,	oil reserv	es of the	world. Fuel a	quality aspects
	r	elated to emissi	ions. Tech	nologica	al up gra	adation re	quired bu	isiness drivin	ng factors for
UNI	T-I a	lternative fuels.	Implemen	tation ba	arriers fo	r alternati	ve fuels.	Stakeholders	of alternative
(10H	Irs) f	uels, Road map	for alternat	ive fuels	5.				
	5	Solar energy: So	olar energy	geome	try, solar	radiation	measurer	ment devices	. Solar energy
	C	collectors, types	of collect	ors. Dir	ect appli	cation of	solar en	ergy, solar e	energy storage
	S	ystem. P. V. e	effect sola	r cells	and char	racteristic	s. Applica	ation of sol	ar energy for
	8	utomobiles.							
	r								
UNI	1-11	Biogas: History,		_		-		-	
(10 H	Hrs)	torage and disp			-	-			-
	Í	Production, prop	erties, Eng	gine pert	tormance	, advanta	ges and d	isadvantages	of Methanol,

		Ethanol, Butanol, Straight vegetable oil, Biodiesel for internal combustion engine application.
UNI (10 I		Hydrogen : Properties and production of hydrogen, Storage, Advantages and disadvantages of hydrogen, use of Hydrogen in SI and CI engines. Hazards and safety systems for hydrogen, hydrogen combustion. Emission from hydrogen. Gaseous fuels: Production, properties, Engine performance, advantages and disadvantages of CNG, LNG, ANG, LPG and LFG.
UNI (10]		 Reformulated Conventional Fuels: Introduction. Production of coal water slurry, properties, as an engine fuel, emissions of CWS. RFG, Emulsified fuels. Hydrogenenriched gasoline. Future Alternative Fuels: Production, properties, Engine performance, advantages and disadvantages of PMF, Ammonia, Liquid-Nitrogen, Boron, Compressed Air, Water as fuel for Internal combustion Engine.
UNI (10]		Alternative Power Trains: Components of an EV, EV batteries, chargers, drives, transmission and power devices. Advantages and disadvantages of EVs. Hybrid electric vehicles, HEV drive train components, advantages of HV. History of dual fuel technology, Applications of DFT. Duel fuel engine operation. Advantages and disadvantages of duel fuel technology.
Toxt	Books	
1.		native Fuel. S .S. Thipse JAICO. Publishing House 2015
2.		Conventional Energy SourcesG. D. Rai Khanna Publishing NewDelhi.2010
Refer	rence E	
1.	Alter	native fuels guide. R. Bechtold SAE 2005
2.	Alter	native energy sources T.N Veziroglu McGraw Hill 2001
3.	Auto	motive Fuels Guide Richard L.BechtoldSAE Publications 1997
4.	Alter	native fuels for vehicle book by M. Poulton

		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		II B.Tech. II Semester MODEL QUESTION PAPER			
		ALTERNATIVE FUELS AND ENERGY SYSTEMS			
		(Honors Degree Course in Mechanical Engineering)			
Tim	e: 3 I		Iax. M	arks:	70 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
	1	Assume suitable data if necessary	ao	***	
			CO	KL	Μ
		UNIT-I			
1.	a).	Briefly discuss the conventional and non-conventional sources of energy?	1	2	7
	b).	What is the need of alternative fuels? Explain the implementation barriers of alternative fuels?	1	2	7
		OR			
2.	a).	Explain the different types of flat type solar collector with the help of neat sketch.	1	2	7
	b).	Explain the working of a photovoltaic cell with the help of neat sketch.	1	2	7
3.	a).	Briefly discuss the major factors that affect power deration in diesel engine when using Bio diesel as its fuel?	2	2	7
	b).	Explain the performance characteristics of ethanol when used in an IC	2	2	7
		engine.			
	, ,	OR	•		_
4.	a).	Describe the working of a biogas plant with a neat sketch and explain its performance on IC engines.	2	2	7
	b).	Explain the hazards and emissions of biogas.	2	2	7
		UNIT-III			
5.	a).	Explain the chemical production of hydrogen.	3	2	7
	b).	Illustrate the properties of hydrogen and safety systems required for	3	3	7
		hydrogen storage.			
		OR			
6.	a).	Explain the performance of an IC engine when using CNG as its fuel.	3	2	7
	b).	Illustrate the properties of gaseous fuels ANG, LPG and LFG.	3	2	7
		UNIT-IV			
7.	a).	Illustrate the Production of coal water slurry.	3	3	7

Course Code: B20MEH101

	b).	Briefly discuss the concept of Hydrogen-enriched gasoline.	3	2	7
		OR			
8.	a).	Explain the chemical production of Liquid-Nitrogen.	3	2	7
	b).	Describe the properties of Ammonia and Boron.	3	2	7
		UNIT-V			
9.	a).	Briefly discuss the future possibilities of an electric vehicle?	4	2	7
	b).	How hybrid electric vehicles are classified? Explain any two.	4	2	7
		OR			
10.	a).	Discuss the design considerations required for constructing an electric vehicle?	4	2	7
	b).	Explain any two types of motor used in electric vehicles.	4	2	7
	С	O-COURSE OUTCOME KL-KNOWLEDGE LEVEL N	I-MAI	RKS	L

(Code	Category	L	Т	P	С	I.M	E.M	Exam
B20 N	AEH201	Honors	3	1		4	30	70	3 Hrs.
		MI	CRO-ELE	CTRO	MECHA	NICAL S	SYSTEM	S	
			(Ho	nors Deg	gree Cour	se in ME))		
Cours	se Objec								
		basics of Mic			•			•	
1.	used for MEMS	micromachini	ng techniq	ues and	to learn	about va	rious sen	sors and act	uators used in
2.	To give	exposure to diff	ferent MEN	AS Ther	mal Sense	ors And A	ctuators.		
2	To learn	the principle	and vario	us devic	es of M	DEMS an	d Magne	tic Sensors A	And Actuators
3.	devices.								
	To impa	rt knowledge o	of the basic	c concep	t of fluid	actuation	n methods	s, dielectro pl	noresis (DEP),
4.	electro t	hermal flow, op	oto electro	wetting	(OEW), a	and therm	al effects	Micro fluidio	es and to learn
	Radio F	requency (RF) N	MEMS						
Cours	se Outco	mes: At the end	l of the cou	irse, stud	lents will	be able to)		
S.No	Outcome					Knowledge Level			
1.		Gain thorough knowledge of materials used for micromachining techniques and Analyze the process of sensors and actuators.							
2.	-	the knowledge nal flow sensors			rocesses,	Thermal	effects, D	evices such	K3
2	Analyz	e and develop	models	for diffe	erent typ	es of Ma	agnetic S	ensors and	W2
3.	magnet	ic sensing and d	letection. I	Develop I	MOEMS	technolog	gy		K3
4.	Analyz	e the process M	icro Fluidi	c System	1.				K3
				SY	LLABUS	5			
UNI (10 F	T-I Hrs)	Mechanical Sensors and Actuators. Principles of sensing and actuation						Im deposition, on: beam and ment by micro	
								probe, peltier IEMS thermo al and vertical	

	actuator, data storage cantilever.
UNIT (10 H	
UNIT (10 H	magneto transistor MEMS magnetic sensor pressure sensor utilizing MOKE mag MEMS
UNI (10 H	
	Books:
1. Dofor	MEMS, Nitaigour Premchand Mahalik, TMH Publishing co.
1.	Foundation of MEMS, Chang Liu, Prentice Hall Ltd.
1. 2.	MEMS and NEMS, Sergey Edwrd Lyshevski, CRC Press, Indian Edition.
3.	MEMS and Micro Systems: Design and Manufacture, Tai-Ran Hsu, TMH Publishers.
4.	Introductory MEMS, Thomas M Adams, Richard A Layton, Springer International Publishers.
e-Res	ources:
1.	https://nptel.ac.in/courses/117105082
2.	https://nptel.ac.in/courses/108108113

		Course C	ode: B	20ME	H201
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A))		R20
		III B.Tech. I Semester MODEL QUESTION PAPER			
		MICRO-ELECTROMECHANICAL SYSTEMS			
		(Honors Degree Course in Mechanical Engineering)			
Tim	e: 3 I		Aax. M	larks:	70 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
	1	Assume suitable data if necessary	00	TTT	
			CO	KL	Μ
4	\ \	UNIT-I	- 1		
1.	a).	Explain about structural and sacrificial materials.	1	3	7
	b).	Describe the MEMS gyroscopes.	1	3	7
	, .	OR			<u> </u>
2.	a).	Explain about surface micro machining and wafer bonding.	1	3	7
	b).	Describe about shear mode piezo actuator and gripping piezo actuator.	1	3	7
		-UNIT-II			
3.	a).	Explain about thermal flow sensors and micro hot plate gas sensors.	2	3	7
	b).	Write about thermisters and thermo devices in detail.	2	3	7
		OR			
4.	a).	Describe U-shaped horizontal and vertical electro thermal actuator.	2	3	7
	b).	Illustrate shape memory alloys (SMA) and data storage cantilever in detail.	2	3	7
		UNIT-III			
5.	a).	Explain the principle of MOEMS technology in detail.	3	3	7
	b).	Explain about digital micro mirror device (DMD).	3	3	7
	,	OR			
6.	a).	Describe about micro lens and micro mirrors.	3	3	7
	b).	Explain about grating light valve (GLV).	3	3	7
		UNIT-IV			
7.	a).	Explain magnetic materials for MEMS and properties.	3	3	7
	a).	Describe about magnetic probe based storage device.	5	3	7
		OR			+ -
8.	a).	Write about mag MEMS actuators and by directional micro actuator.	3	3	7
	b).	Describe about feedback circuit integrated magnetic actuator.	3	3	7
		TINIT/IN N7			
		UNIT-V			

9.	a).	Explain about fluid actuation methods.	4	3	7
	b).	Explain about tuner/filter, resonator and clarification of tuner.	4	3	7
		OR			
10.	a).	Describe micro fluid dispenser and micro pumps.	4	3	7
	b).	Describe about RF MEMS and MEMS inductors.	4	3	7
	C	O-COURSE OUTCOME KL-KNOWLEDGE LEVEL	M-MAF	RKS	

(Code	Category	L	Т	Р	C	I.M	E.M	Exam
B20 N	AEH301	Honors	3	1		4	30	70	3 Hrs.
						RATION			
			(Ho	nors Deg	gree Cour	se in ME)		
Cour	se Objec								
1.		the knowledge on's Second Law							
2.		y the response of the test of test	of a vibrati	ng syste	m with p	eriodic ex	citation a	nd understan	d the principle
		knowledge on v	vibrations	naggurar	nont inst	umonte ou	nd laarn th	e principles	involved in the
3.	-	speed of shafts.		liteasurei	nent msu	unients a		le principies l	involved in the
	entrour	production situation							
Cour	se Outco	mes: Students v	will be able	e to					
S.No				Outco	ome				Knowledge Level
1.		Analyze single degree freedom system for its natural frequency and vibration response.						K3	
		e single degree	freedom	system	for its n	atural fre	quency a	nd damped	
2.	vibration response and determine response of Single degree freedom systems								
	under h	armonic excitat	ions. 📃	NGIN	IEER	ING (COLLI	EGE	
3.		vibration princi ncy and solve th	-	-			ocity, acc	eleration &	K3
4.	Determ	ine the respons	_				nder free	and forced	K3
	vibrations Derive the equation of motion and find the natural frequencies mode shapes of a								
5.		the equation of egree of freedor				-	ies mode	shapes of a	K3
					LLABU				
		ndamped free			•			-	
UNI		nportance of vil							
(10H		rs) of vibration analysis, harmonic motion, Equation of motion, free vibration translational system, free vibration of undamped torsional system.							of undamped
	U		em, nee vi	oration o	n undannj		nai system	1.	
	Г	amped free vit	rations of	f SDOF	Systems	introduc	tion type	s of damning	free vibration
		vith viscous and			-			, or aumping,	
UNI		orced Vibratio			-			s of forced	vibration with
(10H		onstant harmoni		•			•		
Ì		xcitation of sup		-			-	-	•
	tı	ansmissibility, I	Energy dis	sipated d	ue to dan	nping and	Problems	5	

UNIT (8H		 Vibration Measuring Instruments: Displacement measuring instruments or vibrometers, Velocity measuring instruments or velocity pick-ups, Acceleration measuring instruments or accelerometers, Frequency measuring instruments. Critical Speeds of Shafts: Introduction, critical speed of a light shaft having single disc-without and with damping, critical speed of shaft having multiple discs and secondary critical speed.
		Systems with two degrees of Freedom: Principle modes of vibrations, Normal mode and
UNIT	Г-ІV	natural frequencies of systems (without damping) – Simple spring mass systems, masses on
(8H	rs)	tightly stretched strings, double pendulum, torsional systems, combined rectilinear and
		angular systems, Undamped dynamic vibration absorber.
		Numerical Methods for multi degree freedom of systems: Introduction, Free vibrations-
UNI	T-V	equations of motion for multi-degree of freedom systems, Influence coefficients, Rayleigh's
(12 H	Irs)	method, Dunkerley's method, Stodola's method, Rayleigh-Ritz method, Holzer's method,
		Method of matrix iterations.
Text 1	Rooks	
1.		hents of Vibration Analysis by Meirovitch.
2.		hanical Vibrations by G.K. Grover, Nem Chand & Bros., Roorkee, India.
3.		hanical Vibrations by V.P. Singh, Dhanpat Rai & Co. (P) Ltd., Publishers, New Delhi
Refer		
1.	Vibr	ations by W.T. Thomson
2.	Mec	hanical Vibrations – Schaum series
3.	Vibr	ation problems in Engineering by S.P. Timoshenko.
4.	Mec	hanical Viabrations – V.Ram Murthy.
e-Res		
1.		s://nptel.ac.in/courses/112103111
2.	https	s://nptel.ac.in/courses/112107212

		Course C	ode: B	20ME	H301
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		III B.Tech. II Semester MODEL QUESTION PAPER			
		MECHANICAL VIBRATIONS			
		(Honors Degree Course in Mechanical Engineering)			
Tim	e: 3 I		T	ime: 3	3 Hrs.
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary	00	TZT	ъл
			CO	KL	Μ
		UNIT-I			
1.	a).	Derive the equation of motion of spring-mass system by energy method.	1	3	7
		Find the natural frequency of system shown in figure below. The cord			
	b).	may be assumed inextensible.	1	3	7
		OR			
2.	a).	Derive the expression of natural frequency for system given below. k_2 k_1 k_1 k_2 k_1	1	3	7
	b).	Enlist some advantages and disadvantages of vibrations.	1	2	7
		UNIT-II			
3	a)	Define logarithmic decrement and hence deduce the equation for logarithmic decrement for an under damped system.	2	3	7
	b)	A vibrating system consists of a mass of 50 kg, a spring with a stiffness of 30 kN/m and a damper. The damping provided is only	2	3	7

20% of the critical value. Determine the (i) Damping factor; (ii) critical damping coefficient; (iii) natural frequency of damped vibrations (iv) logarithmic decrement OR Define transmissibility and derive an expression for the transmissibility ratio. UNIT-III Explain and discuss vibrometer and accelerometer devices with the help of relative amplitude ratio versus frequency ratio plot. OR	2	3	14
vibrations (iv) logarithmic decrement OR Define transmissibility and derive an expression for the transmissibility ratio. UNIT-III Explain and discuss vibrometer and accelerometer devices with the help of relative amplitude ratio versus frequency ratio plot. OR		3	14
OR Define transmissibility and derive an expression for the transmissibility ratio. UNIT-III Explain and discuss vibrometer and accelerometer devices with the help of relative amplitude ratio versus frequency ratio plot. OR		3	14
Define transmissibility and derive an expression for the transmissibility ratio. UNIT-III Explain and discuss vibrometer and accelerometer devices with the help of relative amplitude ratio versus frequency ratio plot. OR		3	14
transmissibility ratio. UNIT-III Explain and discuss vibrometer and accelerometer devices with the help of relative amplitude ratio versus frequency ratio plot. OR		3	14
Explain and discuss vibrometer and accelerometer devices with the help of relative amplitude ratio versus frequency ratio plot. OR	3		
Explain and discuss vibrometer and accelerometer devices with the help of relative amplitude ratio versus frequency ratio plot. OR	3		
		2	14
A disc of mass 4 kg is mounted midway between bearings which may be assumed to be simple supports. The bearing span is 48 cm. The steel shaft which is horizontal is 9 mm in diameter. The CG of the disc is displaced 3 mm form the geometric centre. The equivalent viscous damping at the centre of the disc-shaft may be taken ad 49 N-sec/m. If the shaft rotates at 760 rpm, find the maximum stress in the shaft and compare it with dead load stress in the shaft. Also find the power required to drive the shaft at this speed.	3	3	14
UNIT-IV			
Determine the expression for the two natural frequencies of the system shown I figure below. The cord is inextensible and there is no slippage between the cord and the pulley. Take the mass of the pulley as m_2 .	4	3	14
OR			
Determine the natural frequency of the system shown in figure below, when $m_1=15 \text{ kg}$, $m_2=20 \text{ kg}$ and $k=480\text{N/m}$ m_1 m_2 m_2	4	3	14
	is displaced 3 mm form the geometric centre. The equivalent viscous damping at the centre of the disc-shaft may be taken ad 49 N-sec/m. If the shaft rotates at 760 rpm, find the maximum stress in the shaft and compare it with dead load stress in the shaft. Also find the power required to drive the shaft at this speed. UNIT-IV Determine the expression for the two natural frequencies of the system shown I figure below. The cord is inextensible and there is no slippage between the cord and the pulley. Take the mass of the pulley as m ₂ . Find 1980 OR Determine the natural frequency of the system shown in figure below, when m ₁ =15 kg , m ₂ =20 kg and k=480N/m	is displaced 3 mm form the geometric centre. The equivalent viscous damping at the centre of the disc-shaft may be taken ad 49 N-sec/m. If the shaft rotates at 760 rpm, find the maximum stress in the shaft and compare it with dead load stress in the shaft. Also find the power required to drive the shaft at this speed. UNIT-IV Determine the expression for the two natural frequencies of the system shown I figure below. The cord is inextensible and there is no slippage between the cord and the pulley. Take the mass of the pulley as m ₂ . 4 0 0 0 0 0 0 0 0 0 0 0 0 0	is displaced 3 mm form the geometric centre. The equivalent viscous damping at the centre of the disc-shaft may be taken ad 49 N-sec/m. If the shaft rotates at 760 rpm, find the maximum stress in the shaft and compare it with dead load stress in the shaft. Also find the power required to drive the shaft at this speed. UNIT-IV Determine the expression for the two natural frequencies of the system shown I figure below. The cord is inextensible and there is no slippage between the cord and the pulley. Take the mass of the pulley as m ₂ . 4 3 Determine the natural frequency of the system shown in figure below, when m ₁ =15 kg , m ₂ =20 kg and k=480N/m 4 3

	UNIT-V				
9.	Three rail bogies are connected by two springs of stiffness 40×10^5 N/m each. The mass of each bogey is 20×10^3 kg. Determine the frequencies of vibration. Neglect friction between the wheels and rails.	5	3	14	
	OR				
10.	Explain the procedure adopted for Rayleigh method to determine the natural frequency of multi-degree of freedom system with an suitable example.	5	3	14	
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-MARK					

С	ode	Category	L	Τ	Р	С	I.M	E.M	Exam	
B20 M	IEH401	Honors	3	1		4	30	70	3 Hrs.	
					ı					
	PRODUCT DESIGN AND DEVELOPMENT									
				(Hone	ors Cours	se)				
Cour	se Obje	ctives:								
1.	To imp	To impart the process of product design and Development								
2.	To exp	To expose the various factors influencing product design.								
Cour	se Outo	omes							-	
S. No	Outcome						Knowledge			
									Level	
1.		fy and analyze the	1	U			rocesses.		K2	
2.	-	in product desig		-	-				K2	
3.	-	oret product spec			-				K2	
4. 5.		ess new and effic					davalann	mont	K2 K2	
5.	Discu	ss various techni	cal and leg	gar issue	sielateu	to product	developi	nent.	K2	
				SVI	LLABUS					
UNI (10F	[[-] [rc]	Introduction: Classification/Specifications of Products, Product life cycle. Product mix, Introduction to product design, Modern product development process, Innovative thinking.								
UNI' (10 H	1-11 Hrs)	Morphology of concept. Produce levelopment eco	ct archite	cture, I	ndustrial	design:	process,			
UNIT-III (10 Hrs)Product planning: Identify opportunities prioritise projects allocate resources pro- planning, Identify customer needs,: product specifications target specifications and fi specifications, concept generation and selection					1 0					
	Creativity Techniques: Creative thinking, concept generation: clarify search external and internal explorer systematically concept selectio engineering rapid prototyping concept testing.				1					
UNI (10 F	T-V Hrs)							egal factors,		

Textbooks:							
1.	Karl T Ulrich, Steven D Eppinger, "Product Design & amp; Development." Tata McGrawhill New Delhi 2003.						
2.	David G Ullman, "The Mechanical Design Process." McGrawhill Inc Singapore 1992.						
3.	N J M Roozenberg , J Ekels , N F M Roozenberg "Product Design Fundamentals and Methods"						
Refer	Reference Books:						
1.	Hollins B & amp; Pugh S "Successful Product Design." Butter worth London.						
2.	Jones J C "Design Methods." Seeds of Human Futures. John Willey New York.						
3.	Bralla J G "Handbook of Product Design for Manufacture, McGrawhill NewYork.						
e-Res	e-Resources:						
1.	https://nptel.ac.in/courses/112107217						
2.	https://onlinecourses.nptel.ac.in/noc21_me66/preview						

Г

		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		IV B.Tech. I Semester MODEL QUESTION PAPER			
		PRODUCT DESIGN & DEVELOPMENT (Honors Course)			
		Mechanical Engineering			
Tim	ie: 3 H	Irs. N	Aax. M	larks:	70 N
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary		I	1
			CO	KL	Μ
		UNIT-I	1	2	7
1.	a).	Differentiate between product Design and Product Development.	1	2	7
	b).	Explain Product Life Cycle with the help of graph.			
		OR			
2.		Interpret various factors that are required in an effective and good product design.	1	2	14
		UNIT-II			
3.	a).	Explain Morphology of product design by ASIMOW.	2	2	7
	b).	What are guidelines for design for robustness? Discuss.	2	2	7
		ENGOREERING COLLEGE			
4.		List down types of FMEA and explain any one with example.	2	2	14
		UNIT-III			
5.		Differentiate between target specifications and final specifications. Explain briefly about the steps involved for obtaining both target and final specifications.	3	2	14
		OR			
6.		Describe the input methods for obtaining information from customer, using suitable illustrations.	3	2	14
		UNIT-IV			
7.	a).	Discuss the role of aesthetics in the product design process.	4	2	7
1.	a). b).	Explain the major factors and considerations affecting product design.	4	2	7
		OR	T		_ '
8.		Discuss briefly the concurrent design approach for product design.	4	2	14
		UNIT-V			
					1

9.		Explain briefly about the overview of DFM process.	5	2	14
		OR			
10.	a).	Explain the procedure for grants of patents.	5	2	7
	b).	With the help of a flow chart explain the design for environment process.	5	2	7
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-M					

