

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) UG Programmes CE,CSE,ECE,EEE,IT & ME are Accredited by NBA CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204

Regula	tion: R20													
	COMPUTER SCIENCE &	ENGINE	ERI	NG (N	Ainor	s)								
SCHEME OF INSTRUCTION & EXAMINATION (With effect from 2020-21 admitted Batch onwards)														
Course Code	Course Name	Year/ Sem	Cr	L	Т	Р	Int. Marks	Ext. Marks	Total Marks					
B20CSM101	Data Structures	II-II	4	3	1	0	30	70	100					
B20CSM201	Operating Systems	III-I	4	3	1	0	30	70	100					
B20CSM301	Database ManagementSystem	111-11	4	3	1	0	30	70	100					
B20CSM401	Object oriented Programming throughC++	IV-I	4	3	1	0	30	70	100					
B20CSM501	*MOOCS-I	II-II to IV-II	2	<u>ous</u>					100					
B20CSM601	*MOOCS-II	II-II to IV-II	2						100					
		TOTAL	20	12	4	0	120	280	600					

*Two MOOCS courses of any COMPUTER SCIENCE & ENGINEERINGrelated Program Core Courses from NPTEL/SWAYAM with a minimum duration of 8 weeks (2 Credits) courses other than the courses offered need to be takenby prior information to the concern. These courses should be completed between II Year II Semester to IV Year II Semester

	Code	Category	L	Т	Р	С	I.M	E.M	E Exam		
B20	CSM101	Minor	3	1	0	4	30	70	3 Hrs.		
			D	ATA ST	FRUCTU	RES					
			(Mir	or Degr	ee course i	n CSE)					
			(Offere	d to CE,	ECE, EE	E & ME)					
Cours	se Objectiv	ves:									
1.	Be familiar with basic techniques of algorithm analysis										
2.		e implementa	tion of da	ata struc	tures like	stacks, qu	eues, linke	d lists,	binary trees,		
2	graphs.		1 .	<u> </u>	· 1 1		•				
3.		r with basic te	-			-			. 1		
4.	heap sort.	ar with severa	i sub-quac	iratic sol	ting algor	itnms inclu	laing quick	sort, m	erge sort and		
5.	Master a		olems and	writing	program	solutions	to problem	ns usir	ng the above		
	technique	5.									
Cours	no Outcom	es: By the end	l of the cou	urso the	student w	11					
Cours		es. By the end		ii se, tile	student w				Knowledge		
S.No				Outco	me				Level		
1.	Demonst	rate the conce	pt of recurs	sion, the	way array	vs, records,	linked struc	tures,	K4		
1.	stacks, queues, trees, and graphs are represented in memory										
2.	-	nt stacks, lin Computer Sci		-				solve	K3		
3.	Compare performa	alternative nce.	implemen	tations	of data	structures	with respe	ect to	К3		
4.		e principal alg			g and sear	ching to th	e given dat	a and	K4		
5.		of Graphs to			ications.				K3		
	·										
					LABUS						
		-	•	tructures	s and Uni	ons, Interna	al Impleme	ntation	of Structures,		
		f-Referential S		. —							
UNI		ple Searchin	e	0	-	1 5	a				
(10 H			-	-		•		-	ation Search,		
		ection Sort, B									
	Int	roduction to]	Kecursion	Towers	s of Hanoi,	Quick Sor	t, Merge So	rt			

UNI7 (10 F	Introduction to Evaluation of Expressions Evaluating Postfix Expressions Infix to 1
UNII (10 E	
UNI7 (10 F	
UNI7 (10 F	Operations Depth First Search Breadth First Search Spanning Trees Minimum Cost
Text I	Books:
1.	Fundamentals of Data Structures in C, 2nd edition, Horowitz, Sahani and Anderson-Freed, Universities Press, 2008.
Refer	ence Books:
1.	Data Structures using C by Aaron M. Tenenbaum
2.	Data Structures with C by Seymour lipschutz
3.	Data Structures using C by R. Krishna Moorthy G. IndiraniKumaravel

		Course Co	de: B2	20CSN	1101
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)		F	R 20
		II B.Tech. II Semester MODEL QUESTION PAPER		ľ	
		DATA STRUCTURES			
		(Minor Degree Course in CSE for CE, ECE, EEE & ME)			
Tin	ne: 3		Max.	Mark	s:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary	~~		
			CO	KL	Μ
		UNIT-I			
1.	a).	Explain representation of array as an ADT along with their advantages and disadvantages	1	3	7
	b).	Arrange the following list of elements in ascending order using Merge Sort A, L, G, O, R, I, T, H, M, S Clearly show the sorting process at each step.	1	2	7
		OR			
2.	a).	Differentiate Structures and Unions.	1	3	7
	b).	Sort the elements using Quick Sort: 52, 38, 81, 22, 48, 13, 69, 93, 14, 45, 58, 79, 72.	1	3	7
		ENGINEERING COLLEGE			
2		UNIT-ILUTONOMOUS	•	•	_
3.	a).	Define stack ADT. Explain basic operations of a stack ADT.	2	3	7
	b).	Convert the given infix Expression ((A+B)*C-(D-E)^(F+G)) into its Equivalent Prefix and Postfix Notations.	2	3	7
		OR			
4.	a).	Explain the procedure to evaluate postfix expression 6 2 3 + - 3 8 2 / + * 2 4 3 +.	2	3	7
	b).	Discuss about implementation of queues using linked list	2	3	7
		UNIT-III			
5.	a).	Compare singly and circular linked list while performing insertion and deletion operations	3	4	7
	b).	Explain polynomial addition using linked list with an example.	3	3	7
		OR			
6.	a).	List various operations of linked list and explain how to insert a node anywhere in the list.	3	2	7
	b).	Explain various operations performed on doubly Linked Lists	3	2	7
		UNIT-IV			

7.		Sketch the binary search tree resulting after inserting the following integer	4	3	7
		keys 49, 27, 12, 11, 33, 77, 26, 56, 23, 6.			
	a).	i) Check whether the tree is almost complete or not?			
		ii) Determine the height of the tree			
		iii) Write post order and preorder traversals			
	b)	Create max heap for the following elements 33, 14, 65, 02, 76, 69, 59, 85, 47,	4	2	7
	b).	99, 98.			
		OR			
8.		A binary tree has seven nodes. The Preorder and Postorder traversal of the	4	3	7
		tree are given below. Can you draw the tree? Justify.			
	a).	Preorder : GFDABEC			
		Postorder : ABDCEFG			
	b).	Write in-order, pre-order and post-order traversal of a binary tree.	4	2	7
		UNIT-V			
0				2	7
9.	a).	What is minimum cost spanning tree? Discuss with an example.	5	2	7
	b).	Explain Dijkstras Algorithm with an example	5	3	7
		OR			
10.	a).	Discuss Kruskal's algorithm advantages and disadvantages.	5	3	7
	b).	Discuss the Representation of Graphs.	5	2	7
	CO-	COURSE OUTCOME KL-KNOWLEDGE LEVEL M-MARK	S		

M-MAKKS

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

Estd. 1980

	Code	Category	L	Т	Р	С	I.M	E.M	Exam			
B20	CSM201	Minor	3	1	0	4	30	70	100			
					NG SYS							
			,	U	ree course	,						
			(Offer	red to CE	E, ECE, E	EE & ME)					
	se Objective											
1.		Introduce to the internal operation of modern operating systems										
2.	management, and file systems											
3.												
4.			it Manage	ment an	d use of	Device D	river and	Secondary S	torage (Disk)			
5	Mechanism		ata ati an N	(nation of Case	4.0.00					
5	Analyze Se	ecurity and Pr	otection N	iecnanis	in in Ope	rating Sys	tem					
Cour	a Autooma	s: At the end	of the cour	se Stude	nte will 1	a abla	-					
Cours		s. At the ellu	or the coul	se stude	ints will t		7		Knowledge			
S.No	(a)			Outc	ome				Level			
1.	Describe	various gener	rations of	Operati	ng Syste	m and fu	unctions	of <mark>Op</mark> erating	K2			
1.	System, System calls											
2.	Describe t Algorithm		of process	, thread	s and an	alyze var	ious CPI	J Scheduling	K2			
3.	-	nemory mana	gement str	ategies					K2			
4.		eadlocks, file	-	-	torage Str	ucture			K2			
					-		g Systems	s. Understand				
5.		ing System lil							К3			
	I				LLABUS							
	-	e .		-	υ.				tem structure,			
UNI		0.	1	1	U		1	arce Operatin				
(6H1	rs) System		-						em Interface,			
,	systen	systems calls, Types of System Calls, system programs, operating system structu										
	systen	n debugging,	System Bo	oot.								
	Ducco	a Canacat	Ducas	a al-	dulina	Onematic	n a on	pr 0000000	Inton process			
	Proce				eduling,	Operatio		processes,	Inter-process			
UNIT		-II communication, Communication in client server systems. Multithreaded Programming: Multithreading models, Thread libraries, Threading										
(10H	rs)		0	-	-				hms, Multiple			
		ssor schedulin	-	-				anng argoin	inno, munipic			
	Proces	Sor Senedulli	5, 1110uu	Seneuuli								

	Inter-process Communication: Race conditions, Critical Regions, Mutual exclusion with							
	busy waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message passing, Barriers,							
	Classical IPC Problems - Dining philosophers problem, Readers and writers problem.							
	Memory-Management Strategies: Introduction, Swapping, Contiguous memory allocation,							
UNIT-II	Paging, Segmentation.							
(06Hrs)	Virtual Memory Management: Introduction Demand paging Copy on-write Page							
(001115)	replacement, Page replacement Algorithms, Frame allocation, Thrashing, Memory-mapped							
	files, Kernel memory allocation.							
	Deadlocks: Resources, Conditions for resource deadlocks, Deadlock detection and recovery,							
UNIT-I	Deadlock avoidance, Deadlock prevention.							
(10Hrs)	File Systems: Files, Directories, File system implementation, management and optimization.							
(101115)	Secondary-Storage Structure: Overview of disk structure, and attachment, Disk scheduling,							
	RAID structure, Stable storage implementation.							
	System Protection: Goals of protection, Principles and domain of protection, Access matrix,							
UNIT-V	Access control, Revocation of access rights.							
(08Hrs)	System Security: Introduction, Program threats, System and network threats.							
	Case Studies: Linux, Microsoft Windows.							
T (D								
Text Bo								
	Silberschatz A, Galvin P B, and Gagne G, Operating System Concepts, 9th edition, Wiley, 2013.							
)	Canenbaum A S, Modern Operating Systems, 3rd edition, Pearson Education, 2008. (for							
	nterprocess Communication and File systems.)							
	ee Books:							
	Dhamdhere D M, Operating Systems A Concept Based Approach, 3rd edition, Tata McGraw- Hill, 2012.							
2.	Stallings W, Operating Systems -Internals and Design Principles, 6th edition, Pearson Education,							
4	2009							
	Jutt G, Operating Systems, 3rd edition, Pearson Education, 2004							
e-Resou	·ces:							
	https://nptel.ac.in/courses/106/105/106105214/							

	Course Co	de: B	20CSN	A201
	SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)]	R 20
	III B.Tech. I Semester MODEL QUESTION PAPER			
	OPERATING SYSTEMS			
	(Minor Degree Course in CSE for CE, ECE, EEE & ME)			
e	3 Hrs.	Max	. Marl	xs:70
	Answer ONE Question from EACH UNIT			
	All questions carry equal marks			
	Assume suitable data if necessary	<u> </u>		
		CO	KL	Μ
	UNIT-I			
a)		1	2	7
b)		1	2	7
	OR			
a)	Explain different types of Operating Systems.	1	2	7
b)	 Define a System call. Explain the various types of system calls provided by Operating System. 	1	2	7
	UNIT-II			
a)	Differentiate one- to- one, many- to-one multi-threading models.	2	2	7
b)	Explain Dining Philosophers problem? Discuss the solution to Dining Philosopher's problem using monitors.	2	2	7
	OR OR			
a)	• Explain Primitive Priority Scheduling Algorithms with an Example?	2	2	7
b)	• Discuss the solution to Reader/Writers Problem using semaphores.	2	2	7
-				
	UNIT-III			
a)		3	2	7
b)		3	2	7
- /	OR			
a)	Define Page Fault. When does a page fault occur? Describe the action taken by	3	2	7
b)	Apply FIFO and LRU page replacement algorithms for the following string to	3	3	7
	7012030423021201701 for a memory with '3' frames.			

	UNIT-IV			
	Apply the deadlock detection algorithm to determine deadlock will exist or not for the following system with 5 process and 3 resource types (resource type A has 7 instances, B has 2 instances, and C has 6 instances) Snapshot at time T0			
9)	Process Allocation Request Available A B C A B C A B C	4	2	7
a).	P0 0 1 0 0 0 0 0 0 P1 2 0 0 2 0 2 0 <td>4</td> <td>3</td> <td>/</td>	4	3	/
	P3 2 1 1 0 0 2 P4 0 0 2 0 0 2			
b).	Explain various File access methods with Suitable examples	4	2	7
	OR			
a).	Explain deadlock avoidance using banker's algorithm with suitable example.	4	2	7
b).	Apply FCFS, SSTF disk arm scheduling schemes to find total number head movements for the following string 98 183 37 122 14 124 65 67 assume the head pointer at 53.	4	3	7
	UNIT-V			
a).	Explain System and Network Threats	5	2	7
b).	Describe the System Component of Windows XP architecture	5	2	7
	ENGOR EERING COLLEGE			
a).	Explain Principles and domain Protections.	5	2	7
b).	Describe the components of the Linux System	5	2	7
	a). b). a). b).	for the following system with 5 process and 3 resource types (resource type A has 7 instances, B has 2 instances, and C has 6 instances) Snapshot at time T0 Process Allocation Request Available A B C A B C A B C A B C P0 0 1 0 0 0 0 0 0 0 0 0 P1 2 0 0 2 0 2 P2 3 0 3 0 0 0 P3 2 1 1 1 0 0 P4 0 0 2 0 0 2 b). Explain various File access methods with Suitable examples CR a). Explain deadlock avoidance using banker's algorithm with suitable example. Apply FCFS, SSTF disk arm scheduling schemes to find total number head movements for the following string 98 183 37 122 14 124 65 67 assume the head pointer at 53. Explain System and Network Threats b). Describe the System Component of Windows XP architecture CR a). Explain Principles and domain Protections. b). Describe the components of the Linux System	for the following system with 5 process and 3 resource types (resource type A has 7 instances, B has 2 instances, and C has 6 instances) Snapshot at time T0 Process Allocation Request Available a). $P0$ 0 1 0 C A B C A B C A B C P0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	for the following system with 5 process and 3 resource types (resource type A has 7 instances, B has 2 instances, and C has 6 instances) Snapshot at time T0 Process Allocation Request Available a). $\begin{array}{cccccccccccccccccccccccccccccccccccc$

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

	Code	Category	L	Т	Р	С	I.M	E.M	Exam			
B20	CSM301	Minor	3	1	0	4	30	70	100			
									·			
			DATABA	SE MA	NAGEM	ENT SYS	STEM					
			(Mi	nor Deg	ree cours	e in CSE)						
			(Offe	red to Cl	E, ECE, I	EEE & MI	E)					
Cour	se Objectiv	ves:										
1.	To introdu	ce about data	base mana	gement s	systems							
2.	To give a good formal foundation on the relational model											
3.	To introdu	ce the concep	ts of basic	SQL as	a univers	al Databa	se languag	ge				
4.		nstrate the p design, logic	-		•		se design	approaches	s by covering			
5.	-	e an overview and storage t		al design	of a data	abase syst	em, by di	scussing Dat	abase indexing			
6.	To explain	Transaction	manageme	nt techni	iques							
Cour	se Outcom	es: At the end	of the cou	irse Stud	ents will	be able						
S.No		PER		Outco	me				Knowledge Level			
1.	Describe f	undamental c	oncepts a r	ela <mark>tio</mark> nal	database	,			K2			
2.	Create, ma	untain and ma	nipulate a	relationa	al databas	e using S	QL		K3			
3.	Apply Cor	nceptual and L	ogical dat	abase de	sign	ING	COLL	EGE	K3			
4.	Apply nor	malization for	database	design	AUTO	DNOMO)US		К3			
5.	Illustrate S	torage manag	gement and	l Transac	ction man	agement (echniques	5.	K2			
				SY	LLABUS	5						
UNI (8H	(Ac appl data	tors on Scene lications. Brie	e, Workers f introduct e; Three ti	behind ion of di er schen	the scene ifferent D na archite	e), Advant ata Mode ecture for	tages of I ls; Concep data inde	Database system pts of Schem pendence; D	Database Users sems, Database a, Instance and atabase system ibase.			
UNI (10]	T-II Hrs) Hrs) rela cons BAS DM whe	tion, importa straints) and the SIC SQL: Sin L operations	nce of n heir impor nple Datab (insert, do thmetic &	ull valu tance base sche elete, up	ies, cons ema, data odate), ba	traints (I types, tab sic SQL	Domain, le definiti querying	Key constrations (create, (select and	attribute, tuple, aints, integrity alter), different project) using ime, Numeric,			

UNI7 (10 H	implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, views(updatable and non-
	updatable), relational set operations.
UNI7 (10 F	- I Normal forms based on functional dependency (INE 2NE and 3 NE) concept of surrogate
UNI' (10 H	
Text	ks:
1.	atabase System Concepts by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, 7th Edition, cGraw-Hill Education, 2019.
2.	atabase Management Systems by Raghu Ramakrishnan, Johannes Gehrke, 3rd Edition., cGraw-Hill Education (India), 2014.
Refer	e Books:
1.	atabase Principles: Fundamentals of Design, Implementation, and Management by Steven orris, Keeley Crockett, Carlos Coronel, Craig Blewett, Cengage, 2020.
2.	indamentals of Database Systems by RamezElmasri, Shamkant B. Navathe, 7th Edition,
2.	earson Education India, 2015.
3.	troduction to Database Systems by C J Date, 8th Edition, Pearson Education, 2009.
e-Res	
1.	tps://nptel.ac.in/courses/106/105/106105175/
2.	tps://www.geeksforgeeks.org/introduction-to-nosql/

		Course (Code: 1	B20CS	M301
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		III B.Tech. II Semester MODEL QUESTION PAPER			
		DATA BASE MANAGEMENT SYSTEMS			
		(Minor Degree Course in CSE for CE, ECE, EEE & ME)			
Ti	me: 3		Ma	x. Mai	rks:70
		Answer ONE Question from EACH UNIT All questions carry equal marks			
		An questions carry equal marks Assume suitable data if necessary			
			CO	KL	Μ
		UNIT-I			
1	a).	Compare Database Management Systems with File Processing Systems	1	2	8
	b).	Explain the roles of different database users	1	2	6
	-	OR			
2	a).	Discuss the applications of Database Management Systems	1	2	6
	b).	Describe the structure of a Database Management System	1	2	8
	-				
		UNIT-II			
		Give syntax and apply the SQL commands for defining two example tables of			
3		your choice. Then insert data, update data in the tables	2	3	14
		FNCORIFFRING COLLEGE			
4		What are relational instances and schemas? How'd you use keys and schemas	2	2	14
4		in relational model?	2	3	14
		UNIT-III			
		Apply conceptual DB design and draw E-R diagram for the following			
		situations by assuming appropriate Attributes			
		i) A Part is supplied by many suppliers at different costs and a supplier			
5		supplies many parts	2	2	8
3	a).	ii) An employee works in at most one department and a department has many employees	3	3	ð
		iii) A house has at least and at most one owner and owner has many houses			
		iv) A muslim woman marries at most one man and a muslim man could marry			
		many woman			
	b).	Demonstrate set operations in SQL	3	3	6
		OR			
6	a).	Demonstrate set operations in SQL	3	3	7
	b).	Illustrate basic features of ER model	3	3	7

		UNIT-IV			
7	a).	Apply Loss-less join decomposition into BCNF for an example table	4	2	8
	b).	Apply dependency preserving decomposition into 3NF for an example table	4	2	6
		OR			
8		Illustrate Normal forms from 1 NF to BCNF.	4	3	14
		UNIT-V			
9		What are page tables and Transaction tables? Describe analysis, redo and undo steps of ARIES.	5	2	14
		OR			
10		Explain 2PL and time stamp ordering protocols	5	2	14
	1	CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-	MARK	S	1

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

(Code	Category	L	Т	Р	С	I.M	E.M	Exam	
B20	CSM401	Minor	3	1	0	4	30	70	100	
				1		1	1	1	1	
		OBJECT	ORIENT	ED PROG	RAMMI	NG THR	OUGH (C++		
			(Mir	nor Degree	course in	CSE)				
			(Offer	ed to CE, H	ECE, EEE	& ME)				
Cour	se Objecti	ves:								
1.	Understar	nd the syntax a	and princip	les of Obje	ect Oriente	ed Program	nming.			
2.	Design and development of secure and extendable C++ applications.									
3.	Describe polymorp		of functio	on overloa	ding, ope	erator ove	erloading,	, virtual f	unctions and	
4.		inheritance w generic progr		Iderstandin	ng of earl	ly and la	te bindir	ig, usage	of exception	
5.		ate the use of		DP's conce	pts with th	ne help of	program	s.		
	1									
Cour	se Outcom	es: At the en	d of the co	urse Stud	ents will l	oe able				
S. No		18 C		Outcom	e				Knowledge	
	11	10 - M							Level	
1.		the process of	-		_				K2	
2.		ate classes, 1 g real world a			onstructor	rs and th	eir impo	rtance in	К3	
3.	Apply C+reusable.	Apply C++ features such as Inheritance, operator overloading to make programs reusable.					programs	K3		
4.	Understar	nd Dynamic M	lemory Ma	nagement	technique	s using po	ointers.		K2	
5.	Apply the concept of Generic Programming and Exception handling to build an efficient and error free code.				build an	К3				
				SYLL	ABUS					
UNI (10 F	T-I Irs) Orie	Oriented Technology Disadvantage of Conventional Programming Key							Concepts of	
UNI (10 H	I-II Hrs)Scope Cont of C	- Constructors and Destructors: Introduction Constructors and Destructor Characteristi							ass. Characteristics	

	Operator Overloading, Type Conversion and Inheritance: The Keyword Operator,							
UNIT	U Overloading Unary Operator, Operator Return Type, Overloading Assignment Operator							
(10 H	(=), Rules for Overloading Operators, Inheritance, Reusability, Types of Inheritance, Virtual Base Classes, Object as a Class Member, Abstract Classes, Advantages of							
	Inheritance, Disadvantages of Inheritance.							
	Intertairee, Disad antages of Intertairee							
	Pointers: Pointer, Features of Pointers, Pointer Declaration, Pointer to Class, Pointer							
UNIT	V Object, The this Pointer, Pointer to Derived Classes and Base Class.							
(10 H								
	Functions, Rules for Virtual Function, Virtual Destructor.							
	Generic Programming with Templates & Exception Handling: Definition of class							
	Templates, Normal Function Templates, Over Loading of Template Function, Bubble Sort							
UNIT	Using Function Templates, Difference between Templates and Macros, Linked Lists with							
(10 H	Templates, Exception Handling, Principles of Exception Handling, and The Keywords- try							
	throw and catch, Multiple Catch Statements, Specifying Exceptions. Overview of Standard Template Library, STL Programming Model, Containers, Sequence Containers,							
	Associative Containers, Algorithms, Iterators, Vectors, Lists, Maps.							
Text B	ooks:							
1.	A First Book of C++, 4 th Edition, Gary Bronson, Cengage Learning.							
2.	The Complete Reference, C++, 5 th Edition, Herbert Schildt, McGraw-Hill Education.							
Refere	nce Books: 1980 AUTONOMOUS							
1.	Object Oriented Programming C++, Joyce Farrell, Cengage Learning.							
2.	++ Programming: from problem analysis to program design, 6th Edition, DS Malik, Cengage							
Ζ.	Learning							
3.	Programming in C++, Ashok N Kamthane, and Pearson.							
4.	Object Oriented Programming using C++, 8th Edition, E.Balaguruswamy, PHI							
e-Reso	urces:							
1.	https://nptel.ac.in/courses/106/105/106105151/							
2.	https://github.com/topics/object-oriented-programming							

		Course C	ode: I	B20CS	M401
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)]	R20
		IV B.Tech. I Semester MODEL QUESTION PAPER		1	
		OBJECT ORIENTED PROGRAMMING THROUGH C++			
		(Minor Degree Course in CSE for CE, ECE, EEE & ME)			
Tim	e: 3 H	Irs.	Ma	x. Mai	rks:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	Μ
		UNIT-I			
1.	a).	Discuss the differences between C and C++	1	2	7
	b).	Explain about disadvantages of conventional programming.	1	2	7
		OR			
2.	a).	Explain about key concepts of Object Oriented Programming.	1	2	8
	b).	Explain about advantages of OOPS.	1	2	6
		UNIT-II			
3.	a).	Explain Classes, Objects and Member Functions.	2	3	6
	b).	Write a C++ program to overload area() and perimeter() function to calculate area of shapes like triangle, square, circle and rectangle.	2	3	8
		OR			
4.	a).	How will you destroy the objects initialized by the constructor in the program?	2	3	5
	b).	Explain the use of different constructors (default, parameterized and copy constructors) with suitable examples.	2	3	9
		UNIT-III			
5.	a).	Explain inheritance with the advantages and disadvantages.	3	3	8
	b).	Illustrate the visibility of base class members for the access specifiers: private, protected and public while creating the derived class and also explain the syntax for creating derived class.	3	3	6
		OR			
6.	a).	What are the various types of situations that might arise and can be handled in data conversion between incompatible types?	3	3	7
	b).	Write C++ Program to overload + operator to add two matrices.	3	3	7

		UNIT-IV			
7.	a).	Explain virtual classes and their need while building class hierarchy.	4	2	7
	b).	Explain the role of this pointer in C++ with a programming example.	4	2	7
		OR			
8.	a).	How does polymorphism promote extensibility? Illustrate	4	2	6
	b).	With a program explain how late binding can be achieved in C++.	4	2	8
		UNIT-V			
9.	a).	Explain Class Template and Function Template	5	2	8
	b).	Write a C++ program that illustrates exception handling with the help of keywords: try, throws and catch.	5	3	6
10.	a).	What is STL? Briefly explain the use of containers, vectors, lists and maps.	5	2	7
	b).	Write a C++ program for Generic Bubble Sort using Template Functions.	5	3	7
		CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-N	MARK	S	

NOTE: Questions can be given as A, B splits or as a single Question for 14 marks

