

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi) UG Programmes CE, CSE, ECE, EEE, IT & ME are Accredited by NBA CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204

Estd:1980

Regula	tion: R20									
	ELECTRONICS AND COMMUN	CATION	ENG	INEE	CRINO	G (M	linors)			
	SCHEME OF INSTRUCTION & EXAMINATION (With effect from 2020-21 admitted Batch onwards)									
Course Code	Course Name	Year/ Sem	Cr	L	Т	Р	Int. Marks	Ext. Marks	Total Marks	
B20ECM101	BASIC ELECTRONICS	II-II	4	3	1	0	30	70	100	
B20ECM201	SIGNALS & SYSTEMS	III-I	4	3	1	0	30	70	100	
B20ECM301	PRINCIPLES OF COMMUNICATIONS	Ш-П	4	-3	1	0	30	70	100	
B20ECM401	BASIC VLSI DESIGN		0410	3	1	0	30	70	100	
B20ECM501	*MOOCS-I	II-II to IV-II	2						100	
B20ECM601	*MOOCS-II	II-II to IV-II	2						100	
		TOTAL	20	12	4	0	120	280	600	

*Two MOOCS of ELECTRONICS AND COMMUNICATION courses any ENGINEERING related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 8 weeks (2 Credits) courses other than the courses offered need to be taken by prior information to the concern. These courses should be completed between II Year II Semester to IV Year II Semester

С	ode	Category	L	Т	P	C	I.M	E.M	Exam	
B20E	CM101	Minors	3	1		4	30	70	3 Hrs	
			B	ASIC EL	ECTRO	NICS				
				ors Degre						
Cours	e Obje	ctives:								
1.		ples of semicondu	uctor dev	vices, basi	c constru	ction, ope	eration & ap	pplication	s of P-N and	
		special diodes.		<u> </u>	1.0.11			•	1 .	
2. 3.		ruction and perfor								
<u> </u>		mental operating operation of MOS								
+.	Dasie				and p-end		g with the b	lasing me	chamshi.	
Cours	e Outc	omes: After comp	letion of	the course	e, the stud	dent will b	e able to		Γ	
S. No				Outco	me				Knowledge level	
	Intern	ret the operation of	of P-N iu	nction and	various	diodes alo	ng with the	rectifier		
1.	circui	-							K2	
2.	Illustr	ate the characteris	tics of B	JT in CE,	CB confi	gurations	along with l	biasing.	K3	
3.	-	ret the Operation a							K2	
4.	-	in the Operation of	of a MO	SFET alon	g with th	ne basic ki	nowledge o	f CMOS	K2	
	techno	blogy.						<u> </u>		
		Ale and		SYL	LABUS					
UNI	тт	Fundamentals of	f P-N ju	nction Dio	de and S	pecial die	odes:			
(8 H		Open circuited PN junction, breakdown mechanism, Diode current							-	
(0		derivation) V-I ch	aracteris	stics and ap	oplication	ns of PN ju	inction dioc	le, Zener o	diode, LED.	
UNI	Г-П	Rectifier circuits	• Half w	ave and Fi	ill wave i	rectifiers	PIV DC vo	ltage and	current rinnle	
(8 H		Rectifier circuits: Half wave and Full wave rectifiers, PIV, DC voltage and cu factor, efficiency, capacitive filter (without mathematical analysis).								
		_	_							
		Fundamentals of								
UNIT		Bipolar Junction					-			
(8 H	rs)	Saturation modes	-			0		1		
		Early effect, Trans		an Amplif	ier and a	Switch, C	omparison	of three co	onfigurations,	
		Self and fixed bias	sing.							
		Field effect trans	istors (F	TET's):						
UNII		Junction Field Ef	`	,	FET) Op	eration, n	-channel J	FET, p-cl	hannel JFET,	
(8 H	(rs)								of FET over	
		BJT, Applications	of FET.				_			
UNI	Г-V	Metal oxide semi	conduct	or Field e	ffect trar	nsistors (N	(IOSFETS)	:		
						```	,			

(8 H	Irs) Construction and Operation, Classification of MOSFETS: N-channel(NMOS), P- channel(PMOS) Enhancement and Depletion modes. Biasing the MOSFET, Comparison between BJT,FET and MOSFET. Basics of Complementary Metal oxide semiconductors (CMOS).
Text l	Books:
1.	Integrated Electronics: Analog and Digital circuits and systems by Jacob Millman and Christos C.Halkias, Tata MCGraw Hill edition.
2.	Electronic devices and circuits by S.Salivahanan and N.Sureshkumar, Tata MCGraw Hill edition.
Refer	ence Books:
1.	Electronic Devices and Circuits Theory by Robert L. Boylestad& Louis Nashelsky, PHI edition
2.	Electronic Devices and Circuits by Sanjeev Guptha, DhanapatRai publications.
e-Res	ources:
1.	https://books.google.co.in/books?id=Qta8v9hJBMAC&printsec=copyright#v=onepage&q&f=fa lse
2.	https://books.google.co.in/books?id=z5nL2x7Z5X4C&printsec=frontcover&source=gbs_ge_su mmary_r&hl=en#v=onepage&q&f=false



**Course Code: B20ECM101** 

## SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) II B. Tech II Semester MODEL QUESTION PAPER

### **BASIC ELECTRONICS**

#### (Minors Degree Course in ECE)

Time: 3 Hrs

Max. Marks:70

**R20** 

# Answer ONE Question from EACH UNIT

All questions carry equal marks

Assume suitable data if necessary

			CO	KL	Μ
		UNIT-I			
1.	a).	Explain basic operation and V-I characteristics of semiconductor diode?	1	2	7
	b).	What is Zener diode? Explain its operation in reverse bias condition along with its applications?	1	2	7
		OR			
2.	<b>a</b> ).	Give a brief note on the breakdown mechanism of a diode.	1	2	7
	<b>b</b> ).	Explain construction and operation of LED?	1	2	7
		UNIT-II			
3.	<b>a</b> ).	Draw and explain the operation of a full wave rectifier.	2	3	7
	<b>b</b> ).	Prove that the rectifier efficiency of a full wave rectifier is twice that of the half wave rectifier.	2	3	7
		OR AUTOMOMOUS			
4.	a).	Derive the expression for efficiency and ripple factor for a half wave rectifier with capacitive filter.	2	3	7
	<b>b</b> ).	Mention the advantages and applications of rectifier circuits.	2	2	7
		UNIT-III			
5.	a).	Plot the input and output characteristics of transistor in CE configuration?	2	2	7
	<b>b</b> ).	Explain different modes of operation of a BJT.	2	2	7
		OR			
6.	<b>a</b> ).	Explain Common-base configuration of transistor?	2	2	7
	<b>b</b> ).	Explain the operation of a BJT in self bias.	2	2	7
		UNIT-IV			
7.	a).	Explain the construction and working of a n-channel JFET.	3	2	7
	<b>b</b> ).	Write a short note on FET biasing.	3	2	7
		OR			
8.	a).	List out the advantages of FET over BJT.	3	2	7
	<b>b</b> ).	Write a brief note on the characteristics of a Junction FET.	3	2	7

		UNIT-V			
9.	<b>a</b> ).	Write a brief note on construction and operation of a MOSFET.	4	2	7
	<b>b</b> ).	List out the comparisons between BJT, FET and MOSFET.	4	2	7
		OR			
10.	<b>a</b> ).	Classify various MOSFET's and Explain them in detail.	4	2	7
	<b>b</b> ).	Write a short note on complementary metal oxide semiconductors.	4	2	7
	CO-(	COURSE OUTCOME KL-KNOWLEDGE LEVEL M	-MARKS	5	



С	ode	Category	L	Т	Р	C	I.M	E.M	Exam
<b>B20E</b>	CM201	Minors	3	1		4	30	70	3 Hrs
								•	•
			SIGN	ALS AN	ND SYS	TEMS			
		(	Minors	s Degree	Course	e in ECE	)		
Cours	e Objectiv	ves:							
1.		luce the fundament	ital con	cepts an	d techn	iques as	sociated wi	th the und	erstanding of
2.	To famil transform	liarize with techni	iques s	uitable f	for anal	yzing co	ontinuous-ti	me LTI s	ystems using
3.		iarize with develop ion and sampling.	pment o	of the m	athemat	ical skill	s to solve	problems i	nvolving
Cours	e Outcom	es: After completion	on of th	e course,	, the stu	dent will	be able to		
S. No				Outcor	ne				Knowledge level
1.	Apply the	e basic concepts of	signals	and syst	ems.	_			K3
2.	Analyze Fourier a	the spectral charact	eristics	of Conti	inuous T	Time aper	iodic signa	ls using	K4
3.	Apply La	place- transforms f	for anal	yzing Co	ontinuou	ıs -time s	ignals and s	systems.	K3
4.	Apply Z-	transforms for ana	lyzing o	discrete-	time sig	nals and	systems.	_	K3
5.	Outline the	he process of samp	ling and	the effe	ects of u	nder sam	pling.	GE	K2
		Estd. 1980			10101	IOMOI	15		
					ABUS				
	NIT-I Hrs)	Introduction to C Continuous–Time Signals, Even & C Signals, Discrete Periodicity, The Functions.	e & Di odd Sig –Time	screte–T nals, Co comple	`ime sig ntinuou x Expo	gnals, Si s-Time conential	gnal Energ omplex Exp and Sinusc	y and Pov ponential an pidal Signa	nd Sinusoidal Ils and their
		Introduction to (	Continu	ious –Ti	me and	Discrete	e – Time Sy	stems	
							n Integral and		
UN	IT-III	Continuous time	Fourie	er Trans	form				
(8	Hrs)	Introduction, Re	present	ation o	f Aper	riodic si	gnals, Co	ntinuous t	ime Fourier

		Transform, Properties of the continuous time Fourier Transform, Systems					
		characterized by linear constant coefficient differential equations.					
		1					
		Laplace Transform					
UN	NIT-IV	Introduction, The Laplace Transform, Region of convergence for Laplace					
(8	B Hrs)	Transforms, The Inverse Laplace Transform, Properties of Laplace Transforms, The					
		initial and Final value theorems.					
		Sampling Theorem and Z-Transform					
		Introduction to Sampling Theorem, Statement of Sampling Theorem for Low pass					
UN	NIT-V	signals (Theorem Proof for Low Pass signals only), Discussion on Oversampling,					
(10	0 Hrs)	Critical sampling and Under sampling (aliasing), The Z-Transform, The Inverse Z-					
		Transform, Properties of Z-Transform, Initial and Final Value theorems, Some					
		common Z-transform pairs.					
Text l	Books:						
1.	Signals	Systems and Communication-B. P. Lathi, BS Publication.					
2.	Signals	and Systems- Alan V. Oppenheim, Alan S. Willsky and Ian T. Young, PHI, 2ndEdn.					
Refer	ence Bool	κς:					
1.	Signals	and Systems – P.RamakrishnaRao, TMH.					
2.	Signals	and Systems- A.AnandaKumar,PHI.					
e-Res	ources:						
1.	https://o	cw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/video-					
1.	lectures/	Estd. 1980 AUTONOMOUS					
2.	https://sv	wayam.gov.in/nd1_noc20_ee06/preview_					

		Course	Code:I	<b>320EC</b>	M201
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)	)		R20
		III B. Tech I Semester MODEL QUESTION PAPER			
		SIGNALS AND SYSTEMS			
		(Minors Degree Course in ECE)			
Tin	ne: 3 I	Irs	Ma	x. Ma	rks:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	Μ
		UNIT-I			
1.	a).	Explain all classification of signals with examples for each category.	1	3	7
		Determine the power and RMS value of the following signals.			
	<b>b).</b>	1. $x(t) = 5\cos(50t+3)$ ,	1	3	7
		2. x (t) = $10\cos(5t)\cos(5t)(10t)$			
		OR			
2.	<b>a</b> ).	Prove the energy of the power signal is infinite over infinite time.	1	3	7
	b).	Find weather the below signals are periodic or not, if periodic find periodicity also. 1.(-1)n 2. Cos 3t u(t)	1	2	7
3.	a).	Determine whether the following systems are time invariant or not. Estd. 1980 1. $y(t) = x(t2)$	2	2	7
		$2 \cdot y(n) = x(2n)$			
	<b>b</b> ).	Find the convolution of the following two discrete time sequences $x(n) = \{1, 2, 5, 4\}$ and $y(n) = \{6, 2, 4, 3\}$ .	2	2	7
		OR			
4.	a).	Find the convolution of the following two signals. $X(t) = u(t)$ and $y(t) = e-atu(t)$ .	2	3	7
	<b>b</b> ).	Explain all classification of systems with examples for each category.	2	3	7
		UNIT-III			
		State and derive time shifting and time scaling Properties of Fourier			
5.	a).	Transform.	3	3	7
	b).	Find the Fourier transform of the following 1. eatu-t 2. te-atu(t)	3	3	7
		OR			
6.	a).	Find the inverse Fourier transform of $X(jw) = 1/(1+jw)^2$	3	3	7

<b>b</b> ).	State and prove the differentiation in the frequency domain property of CTFT	3	3	7
	UNIT-IV			
a).	Find the Laplace Transform of xt=te-atu(t)	4	3	7
<b>b</b> ).	State and prove any two properties of the Laplace Transform.	4	3	7
	OR			
<b>a</b> ).	Compute the initial and final values for $xs = 2s+5s(s+3)(s+4)2$	4	3	7
<b>b</b> ).	Find the inverse Laplace Transform of XS=logS+5S+6	4	3	7
	UNIT-V			
<b>a</b> ).	List out the properties of ROC of Z – Transform.	5	3	7
<b>b</b> ).	Find the Z – Transform of the signal 12n-1u(n-1).			
	OR			
<b>a</b> ).	Find the inverse Z – Transform of 1-aZ-1Z-1-a with ROC Z>1a	5	3	7
b).	State the Nyquist sampling theorem and discuss about under sampling, critical sampling and over sampling conditions.	5	3	7
	a). b). a). b). a). b). a).	<ul> <li>b). CTFT</li> <li>CTFT</li> <li>a). Find the Laplace Transform of xt=te-atu(t)</li> <li>b). State and prove any two properties of the Laplace Transform.</li> <li>OR</li> <li>a). Compute the initial and final values for xs= 2s+5s(s+3)(s+4)2</li> <li>b). Find the inverse Laplace Transform of XS=logS+5S+6</li> <li>UNIT-V</li> <li>a). List out the properties of ROC of Z – Transform.</li> <li>b). Find the Z – Transform of the signal 12n-1u(n-1).</li> <li>OR</li> <li>a). Find the inverse Z – Transform of 1-aZ-1Z-1-a with ROC Z&gt;1a</li> <li>b). State the Nyquist sampling theorem and discuss about under sampling,</li> </ul>	b). CTFT       3         CTFT       3         a). Find the Laplace Transform of xt=te-atu(t)       4         b). State and prove any two properties of the Laplace Transform.       4         a). Compute the initial and final values for xs= 2s+5s(s+3)(s+4)2       4         b). Find the inverse Laplace Transform of XS=logS+5S+6       4         b). Find the inverse Laplace Transform of XS=logS+5S+6       4         compute the properties of ROC of Z - Transform.       5         b). Find the Z - Transform of the signal 12n-1u(n-1).       5         complexation       6         complexation       5         b). Find the inverse Z - Transform of 1-aZ-1Z-1-a with ROC Z>1a       5         b). State the Nyquist sampling theorem and discuss about under sampling, 5       5	b).CTFT33UNIT-IVa).Find the Laplace Transform of xt=te-atu(t)43b).State and prove any two properties of the Laplace Transform.43a).State and prove any two properties of the Laplace Transform.43a).Compute the initial and final values for xs= 2s+5s(s+3)(s+4)243b).Find the inverse Laplace Transform of XS=logS+5S+643a).List out the properties of ROC of Z - Transform.53b).Find the Z - Transform of the signal 12n-1u(n-1).53a).Find the inverse Z - Transform of 1-aZ-1Z-1-a with ROC Z>1a53b).State the Nyquist sampling theorem and discuss about under sampling,53





С	ode	Category	L	Т	Р	С	I.M	E.M	Exam
<b>B20E</b>	CM301	Minors	3	1		4	30	70	3 Hrs
		·							
		PRINCI	PLES C	<b>F CON</b>	MMUN	ICATI	ONS		
		(Mii	nors De	gree Co	ourse i	n ECE)			
Course	Objectiv	es:							
1.		ze with the fundaments graduation and dem		-		unicatio	on systems	s and vario	ous techniques
2.	To provie of noise.	de a good understand	ing of th	ne behav	viour of	f analog	; communi	cations in	the presence
3.		luce the elementary c hniques of generating	-	-			-		niliarize with
4.		luce the elementary c							
	I			0					
Course	Outcome	es: After completion of	of the co	ourse, th	e stude	nt will	be able to		
S. No				tcome					Knowledge
<b>5.</b> NU		0	Uu	tcome		_	_		level
1		tiate various amplitud the performance of v of noise.							K4
2	analyse t	tiate various frequence he performance of fre							K4
3	Understa	nd the basic concepts on and demodulation	-		nd diffe	rentiate	various P	ulse	K2
4		nd the basic concepts			esentati	on of ar	nalog signa	als.	K2
5	Understa	nd the concepts of di	gital mo	dulatio	n techn	iques.			K2
			<b>C</b>	YLLA	RUS				
UNI7 (10 H	<b>F-I</b> Car (rs) An	<b>APLITUDE MODU</b> odulation, Switching rrier Modulation, Rin oplitude Modulation altiplexing, Noise in I	JLATIC Modula ng Modu , SSB	DN: In ator, En alator, C Modu	troduct velope Coherer lation,	Detector t Detector VSB	or, Double ction, Cost Modulatio	e Side Bar as Receivo on, Frequ	nd-Suppressed er, Quadrature
UNIT (8 Hi	<b>C-II</b> FM rs) Sig	<b>IGLE MODULATI</b> 1, Wide Band FM, 3, mals, Demodulation 1 Receivers, FM Thre	Transm of FM S	ission Signals,	Bandw Phase-	idth of Locked	FM Sign I Loop FN	als, Gene I demodul	eration of FM lator. Noise in

UNII (8 H		<b>PULSE MODULATION</b> : Introduction, Why digitize analog sources? The Low Pass Sampling Process, Pulse Amplitude Modulation. Time Division Multiplexing, Pulse width Modulation, Pulse-Position Modulation, Generation and Detection of PWM and PPM waves.
UNIT (8 H		<b>DIGITAL REPRESENTATION OF ANALOG SIGNAL:</b> Quantization of signals, Quantization error, Pulse Code Modulation, Companding, T1 Digital system, Differential Pulse Code Modulation, Delta Modulation
UNI (8 H		<b>DIGITAL MODULATION AND TRANSMISSION:</b> Binary Phase-Shift Keying, Differential Phase-Shift Keying, Differentially-Encoded PSK (DEPSK), Quadrature Phase-Shift Keying (QPSK), M-ary PSK, Binary Frequency Shift-Keying
Text B	looks:	
1.	Prin	ciples of Communication Systems, H.Taub&D.L.Schilling, TMH, 2011
2.		<b>munication Systems</b> , Simon Haykins& Moher, 5th Edition, John Willey, India Pvt. Ltd, J. ISBN 978 – 81 – 265 – 2151 – 7.
Refere	ence Bo	ooks:
1.		ern Digital and Analog Communication Systems, B. P. Lathi, Oxford University Press., dition.
2.		ntroduction to Analog and Digital Communication, Simon Haykins, John Wiley India Ltd., 2008, ISBN 978-81-265-3653-5.
3.	Com	munication Systems, Harold P.E, Stern Samy and A.Mahmond, Pearson Edition, 2004.
4.		munication Systems: Analog and Digital, R.P.Singh and S.Sapre: TMH 2nd on, 2007.
e-Reso	ources:	
1.	https	://nptel.ac.in/courses/117/105/117105143/
2.	https	://nptel.ac.in/courses/117/101/117101051/
3.	-	://www.tutorialspoint.com/analog_communication/index.htm
4.	https	://www.tutorialspoint.com/digital_communication/index.htm

		Course C	Code: I	<b>320EC</b>	M301
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)	)		R20
		III B. Tech II Semester MODEL QUESTION PAPER			
		PRINCIPLES OF COMMUNICATIONS			
		(Minors Degree Course in ECE)			
Tin	ne: 3 I		M	ax. Ma	rks:70
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary	00	TZT	
		TINITA T	CO	KL	M
1		UNIT-I	1		7
1.	<b>a</b> ).	Explain the operation of envelope detector with a neat diagram.	1	2	7
	<b>b</b> ).	Derive an expression for output signal -to-noise ratio in DSB-SC system.	1	3	7
		OR			
2.	<b>a</b> ).	Explain the coherent detection of DSB-SC modulated waves.	1	2	7
	<b>b).</b>	Explain vestigial sideband modulation.	1	2	7
		UNIT-II			
3.	a).	Define frequency deviation and phase deviation in Frequency Modulation and differentiate between NBFM and WBFM.	2	2	7
	<b>b</b> ).	Explain transmission bandwidth of FM Signals	2	2	7
		Estd 1980 OR AUTONOMOUS			
4.	a).	Draw the block diagram of an Indirect method of FM generation and explain its operation.	2	2	7
	<b>b</b> ).	Explain Pre-Emphasis and De-Emphasis.	2	2	7
		UNIT-III			
5.	a).	State and prove Nyquist Sampling theorem for low pass signals.	3	2	7
	b).	With neat block schematic diagrams explain the generation and detection of a PAM signal.	3	2	7
		OR			
6.	a).	Explain the modulation and demodulation techniques for pulse time modulation systems.	3	2	7
	<b>b</b> ).	Explain Time Division Multiplexing.	3	2	7
		UNIT-IV			
7.	a).	Explain about the operation of a PCM system.	4	2	7
	<b>b</b> ).	Explain differential pulse code modulation.	4	2	7
		OR			

8.	<b>a</b> ).	Explain delta modulation (DM) system.	4	2	7
	<b>b</b> ).	Explain companding.	4	2	7
		UNIT-V			
9.	a).	Explain how a binary signal can be transmitted and received by using a	5	2	7
7.	<i>a)</i> .	BPSK system.	5		,
	b).	Explain the method of generation and recovery of a DPSK signal. What	5	2	7
	<b>U</b> ).	is DEPSK?	-	2	'
		OR			
10.	a).	Explain how a binary signal can be transmitted and received by using a	5	2	7
10.		BFSK system.	3		/
	<b>b</b> ).	Explain the role of a QPSK transmitter and receiver in serial data	5	2	7
	<i>U)</i> .	transmission and reception.	3	4	/
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-M					



0	Code	Category	L T P C I.M	E.M	Exam					
<b>B20E</b>	ECM401	Minors	3	1		4	30	70	3 Hrs	
BASIC VLSI DESIGN										
			(Minors	Degree	e Cours	e in ECF	E)			
	Course Objectives:									
1.		To introduce various fabrication steps of MOS transistors and their electrical properties. To implement the stick diagrams and layouts using CMOS/Bi-CMOS design rules.								
2.										
3.	designs	explain MOS technology interconnection as circuits, scaling models, static and dynamic signs.						and dynamic		
4.	To intro	oduce Basic FPGA	Architect	ure and	testing	methods	of digital of	circuits.		
~										
Cours	se Outco	mes: After comple	tion of the	e course	, the stu	ident will	be able to			
S.No		Outcome					Knowledge Level			
1.	•	e the Electrical pro			-				K3	
2.	Design rules.	the layouts of vari	ious MOS	circuit	s by ap	plying th	e concept	of design	K4	
3.	Interpret the basic MOS circuit concepts, scaling models and the impact of scaling MOS circuits along with a few static and dynamic CMOS Designs.				K2					
4.	Interpre	et the concepts of F	PGA and	testing	method	s of digit	al circuits.	GE	K2	
		Estd. 1980			<u>4UTO</u>	<u>NOMO</u>	US			
					LABUS					
UNI (10E	T-I M Irs) In In	<b>Introduction</b> : Introduction to IC Technology, Fabrication process: CMOS (NMOS PMOS), Ids versus Vds Relationships, Aspects of MOS transistor Threshold Voltage MOS transistor Transconductance, Output Conductance and Figure of Merit. NMOS Inverter, Pull-up to Pull down Ratio for NMOS inverter driven by another NMOS Inverter, and through one or more pass transistors, The CMOS Inverter, Latch-up in CMOS circuits.							hold Voltage, Merit. NMOS nother NMOS	
UNI' (10 F	T-II R Hrs) P								Metal, Double	
UNI7 (10 F	T-III D Hrs) So	<ul> <li>Basic Circuit Concepts: Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, The Delay Unit, Inverter Delays, Propagation Delays.</li> <li>Scaling of MOS Circuits: Scaling models, Scaling factors for device parameters, Limitations of Scaling on substrate doping.</li> </ul>								

UNIT-I (10 Hr	Test and Testability: Design for Testability, Scan Design Techniques and Built-In-SelfTest.FPGA Based Systems: Introduction, Basic concepts, FPGA architecture.					
UNIT- (10 Hr	<ul> <li>Static CMOS Design: Complementary CMOS and its static properties, Ratioed logic, Pass Transistor logic- Design of logic gates.</li> <li>Dynamic CMOS Design: Basic principles, speed and power dissipation of dynamic logic, Issues in dynamic logic- charge leakage, charge sharing, Static latches and</li> </ul>					
	registers- Latches versus registers, The bistability principle.					
Textboo	oks:					
1.	Essentials of VLSI Circuits and Systems By Kamran Eshraghian, Douglas and A. Pucknell nd Sholeh Eshraghian, Prentice-Hall of India Private Limited, 2005 Edition.					
2.	Digital Integrated Circuits, Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic,2nd edition, 2016					
Referen	ce Books:					
1.	FPGA Based System Design - Wayne Wolf, Pearson Education, 2004, Technology an Engineering					
2.	CMOS Digital Integrated Circuits Analysis and Design, Sung-Mo Kang, Yusuf Leblebici Tata McGraw Hill Education, 2003.					
e-Resou	rces ENGINEERING COLLEGE					
1.	https://www.engineersgarage.com/vlsi-technology-an-overview/					
2.	https://www.tutorialspoint.com/vlsi_design/vlsi_design_digital_system.htm					

Г

		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)	)		R20
IV B. Tech. I Semester MODEL QUESTION PAPER					
		BASIC VLSI DESIGN			
		(Minors Degree Course in ECE)			
Tin	ne: 3 I	Irs	Ma	ax. Ma	rks:7
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	Μ
		UNIT-I			
1.	<b>a</b> ).	Explain the NMOS fabrication steps with neat diagrams.	1	3	7
	b).	Derive the relation between pull –up tp pull-down ratio for nMOS inverter.	1	3	7
		OR			
2.	a).	With neat diagrams explain the process of P-well CMOS Inverter.	1	3	7
	<b>b</b> ).	Explain in detail about latch-up in cmos	1	3	7
		UNIT-II			
3.	a).	Draw the stick diagrams and layouts for (a) CMOS inverter (b) 3 Input NAND and NOR gates using NMOS Technology	2	4	7
	<b>b</b> ).	Define Buried contact, Butting contact and Via contact.	2	4	7
		OR			,
4.	a).	Sketch $\lambda$ -based design rules for wires, transistors and contacts.	2	4	7
	b).	Draw the layout diagram for OAI logic using CMOS.	2	4	7
	~)•		_	-	-
		UNIT-III			
5.	a).	What is meant by Delay unit? Estimate NMOS inverter pair delays with relevant example.	3	2	10
	<b>b</b> ).	Write a short note on scaling models.	3	2	4
		OR			
6.	a).	Draw scaled NMOS transistor and derive all scaling factors for device parameters. Consider Combined V and D scaling model	3	2	7
	<b>b</b> ).	Calculate total on resistance of CMOS inverter where $Z_{PU}/Z_{PD}=8/1$	3	2	7
		UNIT-IV			
7.	a).	Explain about various Scan design techniques.	4	2	10
	<b>b</b> ).	Explain about controllability and observability?	4	2	4
		OR			1

8.	<b>a</b> ).	Explain the Basic FPGA Architecture.	4	2	7
	<b>b</b> ).	Write various steps to be followed for test mode in Scan Design	1	2	7
		Techniques?	4	2	/
		UNIT-V			
9.	<b>a</b> ).	Explain charge leakage and charge sharing in dynamic logics.	3	2	7
	<b>b</b> ).	Give a brief explanation about CMOS Ratioed logic.	3	2	7
		OR			
10.	<b>a</b> ).	Write a short note on complementary CMOS and its properties.	3	2	8
	<b>b</b> ).	Explain Bi-stability principle.	3	2	6
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M				5	•

