TO BE DESCRIPTION OF THE PARTY OF THE PARTY

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JNTUK, Kakinada), (Recognized by AICTE, New Delhi)
UG Programmes CE,CSE,ECE,EEE,IT & ME are Accredited by NBA

CHINNA AMIRAM (P.O):: BHIMAVARAM :: W.G.Dt., A.P., INDIA :: PIN: 534 204

Regulation	Regulation: R20										
ELECTRICAL & ELECTRONICS ENGINEERING (Minors)											
	SCHEME OF INSTRUCTION & EXAMINATION										
Course	(With effect from 2020-21	T	Batc	h onw	vards)	In4	E4	Total		
Course Code	Course Name	Year/ Sem	Cr	L	T	P	Int. Marks	Ext. Marks	Marks		
B20EEM101	Electrical Power Generation	II-II	4	3	1	0	30	70	100		
B20EEM201	Electrical & Electronics Measurements	III-I	4	3	1	0	30	70	100		
B20EEM301	Power Transmission & Distribution	III-II	4	3	1	0	30	70	100		
B20EEM401	Basic Power Electronics	IV-I	4	3	1	0	30	70	100		
B20EEM501	MOOCS-1	II-II to IV-II	2	CO		EG	E		100		
B20EEM601	MOOCS-2	II-II to IV-II	2						100		
		TOTAL	20	12	4	0	120	280	600		

*Two MOOCS courses of any ELECTRICAL & ELECTRONICS ENGINEERING related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 8 weeks (2 Credits) courses other than the courses offered need to be taken by prior information to the concern. These courses should be completed between II Year II Semester to IV Year II Semester

(Code	Category	L	T	P	C	I.M	E.M	Exam	
B20	EEM101	Minors	3			3	30	70	3 Hrs	
								<u> </u>		
			ELECTR	ICAL P	OWER (GENERA	TION			
			(Mi	nor Deg	ree cours	e in EEE)				
Cour	se Objecti	ves: Students	will learn	1						
1.	About the	importance o	f electrical	l energy,	working	principle	and type	s of generator	·s.	
2.	About layout and working of Thermal and Hydro power stations.									
3.	About the general arrangement, principles and components & their functions present in nuclear									
4		ower plants.		1						
4.		different non			-					
5.	About loa	d demand and	l economic	aspects	of powe	r systems.				
C.	O 1	C4 1 4	211 3 1	1- 4:						
Cour	se Outcom	es: Students	will be ab	ole to					V	
S.No				Outco	omes				Knowledge Level	
	Applythe	escience and e	engineerin	g fundar	nentals t	o understa	and the g	eneration of		
1.		energy and w	•	_			8	• • • • • • • • • • • • • • • • • • • •	K3	
2.		e the operation							К3	
3.	Illustrate	ethe power ge	neration fr	om nucl	ear and g	as power	plants		К3	
4.	Explore	the Solar, win	d, tidal and	d Ocean	thermal	energy con	nversion	systems	К3	
5.	Describe	economic asp	ects of pov	wer gene	ration an	d tariff			К3	
	•									
				SY	LLABU	8				
		FRODUCTIO							_	
UNI		_	="		_			_	gy, sources of	
(10 H		rgy, Units of es of alternato	_		_	_	on and c	onstruction of	f alternators –	
	ιyp	es of antimalo	15, eiii eq	uation of	ancillal	л.				
	ТН	ERMAL AN	D HYDRO	O ELEC	TRIC P	OWER P	LANTS			
								description o	f components,	
UNI		antages and d	-				,	1	1	
(10 H	Hrs) Hy	droelectric po	wer statio	ns - Sel	lection o	f site, ger	neral arra	ngement and	l operation of	
	hyd plai		nts, advan	tages an	d disadv	antages, c	lassificat	ion of hydro	electric power	
TINITE	D TTT NIZ.	CIEAD AND		MIZED :	N ANIMO					
UNIT	1-111 NU	CLEAR ANI	v GAS PC)WEK I	LANTS					

(10 H	Irs)	Selection of site, working principle, nuclear fission, nuclear fuels, nuclear chain reaction, general layout of a nuclear power plant, Brief description of components, advantages and disadvantages.						
		Gas turbine power plant schematic arrangement, Brief description of components, Open cycle and closed cycle gas turbine power plants, advantages and disadvantages.						
		NON-CONVENTIONAL POWER GENERATION						
UNIT	Γ-IV	Non-Conventional Sources, Solar cell principle, photovoltaic system for power generation,						
(10 H	Irs)	Components of Wind energy conversion system, Tidal and Ocean thermal energy conversion- Layout and Principle, Advantages and disadvantages.						
		ECONOMIC ASPECTS OF POWER GENERATION & TARIFF						
		Economic Aspects –load curve, load duration curves, discussion on economic aspects:						
UNI	Γ-V	connected load, maximum demand, demand factor, load factor, diversity factor, power						
(10 H		capacity factor and plant use factor.						
(101)	115)	Tariff Methods-costs of generation and their division into fixed, semi-fixed and running						
		costs, desirable characteristics of a tariff method, tariff methods: simple rate, flat rate,						
		block-rate, two-part and three–part tariff methods – simple problems.						
Text l	Books	:						
1.	Prin	ciples of Power systems by V.K.Mehta, S.Chand Publications,2006						
2.		Textbook of Electrical technology - vol 2 by B. L Theraja, A.K Theraja, S. Chand						
۷.	publ	ications, 23 rd edition						
3.	Non	-conventional Energy Sources, G.D.Rai, Khanna Publishers, Fifth edition 2016						
Refer	ence l	Books:						
1.	A To	extbook on Power System Engineering. Gupta, M.L. Soni, U.S. Bhatnagar, A. Chakrabarti.						
2.	A C	ourse in power systems. J.B Gupta, S.K Kataria and Sons, 2013						

		Course C	ode: B	20EE	M101
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A))		R20
		II B.Tech. II Semester MODEL QUESTION PAPER			
		ELECTRICAL POWER GENERATION			
		ELECTRICAL AND ELECTRONICS ENGINEERING			
Tim	e: 3 H	Irs.	Max. M	larks:	70 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary	T	1	1
			CO	KL	M
		UNIT-I			
1.	a).	Describe the importance of electrical energy.	1	3	7
	b).	Explain the different types of sources of energy.	1	3	7
		OR			
2.	a).	Explain the construction and working principle of an Alternator.	1	3	7
	b).	Derive the emf equation of Alternator.	1	3	7
		UNIT-II			
3.	a).	Describe the important components of a Thermal powerstation.	2	3	7
	b).	Explain briefly about Selection of site for thermal power plant	2	3	7
		ENGINEERING COLLEGE			
4.	a).	Describe the general arrangement and operation of hydroelectric plants.	2	3	7
	b).	Explain the classification of hydroelectric power plants	2	3	7
		UNIT-III			
5.	a).	Explain the working of Nuclear power plant with a neat layout.	3	3	7
	b).	Describe the working of nuclear reactor and explain it's components.	3	3	7
		OR			
6.	a).	Explain the working of Open cycle gas power plant with a neat layout.	3	3	7
	b).	Explain briefly about the advantages and disadvantages of gas power plants	3	3	7
		UNIT-IV			
7.	a).	Explain the working of solar power generation.	4	3	7
··	b).	Explain the working of solar power generation. Explain briefly about the advantages and disadvantages of solar photovoltaic power generation.	4	3	7

OR

8.	a).	Explain the working of open cycle ocean thermal energy conversion with a neat diagram.	4	3	7
	b).	Explain the advantages and disadvantages of Tidal power generation.	4	3	7
		UNIT-V			
9.	a).	Define and explain the importance of the following terms in generation: (i) Connected load (<i>ii</i>) maximum demand (<i>iii</i>) demand factor (<i>iv</i>) average load.	5	3	7
	b).	A consumer has the following connected loads: 15 lamps of 40 W each and two heaters of 1,000 W each. His maximum demand is 15000 W. On the average he uses 10 lamps for 5 hours a day and each heater for 3 hours a day. Calculate his average load, monthly energy consumption and load factor.	5	3	7
		OR			
10.	a).	Explain two part tariff and three part tariff.	5	3	7
	b).	Evaluate annual bill of a consumer whose maximum demand is 100kW, power factor = 0.8 lagging and load factor = 50%. The tariff used is Rs 75 per of maximum demand plus 20 paise per kWh consumed.	5	3	7

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

(Code	Category	L	T	P	C	I.M	E.M	Exam
B201	EEM201	Minors	3			3	30	70	3 Hrs
				•					
		ELECTI	RICAL A	ND ELE	ECTRO	NIC MEA	SUREMI	ENTS	
			(M	inor Deg	ree cours	se in EEE))		
Cours	se Objecti	ves: Students	will lear	n					
1.	About the	basics of meas	surements	, instrum	ents cha	racteristic	s and error	îs.	
2.	About anal	og measuring	instrume	nts for cu	irrent, vo	ltage and	resistance		
3.	About the i	instruments fo	r measuri	ng powe	r & ener	gy			
4.	About vari	ous electronic	measurin	g instrur	nents				
5.	About the	Cathode Ray (Oscillosco	pe (CRC), displa	y devices	and recor	ders	
Cours	se Outcom	es: Students	will be al	ole to					
S.No				Outco	omes				Knowledge
5.110									Level
1.		the significand							К3
2.		e the working					ng instrun	nents	К3
3.		e the working							К3
4.		the knowledge							К3
5.	Illustrate	e the working	of CRO, I	Display o	devices a	nd recorde	ers		К3
				SY	LLABU	<u>S</u>			
	T > 10		NI TO M	E A GEID		IC AND E	NOTE	
		TRODUCTIO							
UNI	1-1	_							nt, Modes of s, Applications
(10 H	irs)				•				Measurements-
		ss, Systematic	•			stics of in	istraments	, Liiois iii i	wicasurements-
	ME	CASUREMEN	NT OF C	URREN'	T, VOL	TAGE &	RESISTA	NCE	
									nts, Permanent
UNI							_	-	range, Simple
(10 H		blems, Mov			ruments-				& Working,
	Ele	ctrodynamom	eter type	Instrume	ents- Prin	nciple, Co	nstruction	& Working	g. Ohmmeters-
	Ser	ies-Type, Shu	nt Type a	nd Megg	er.				
UNIT		CASUREMEN							
(10 F	Irs) Intr	oduction to \	Wattmeter	r, Types	of Wat	tmeters, I	Dynamom	eter Wattme	eter- Principle,

		Construction & Working, Advantages & Disadvantages, Errors. Measurement of single							
		phase Power using Wattmeter & without Wattmeter. Introduction to Energy meter,							
		Essential characteristics of Energy Meter, Induction Type Single Phase Energy Meter-							
		Construction, Operation, Errors, Compensations.							
		ELECTRONIC INSTRUMENTS							
UNI	т ту	Introduction, Essentials of Electronic Instruments, Advantages of Electronic Instruments.							
		Electronic Voltmeters- Introduction, Advantages, Types, Rectifier Type AC Voltmeter,							
(101	Hrs) Average Responding Voltmeter, Peak Responding Voltmeter, True RMS re-								
		Voltmeter, Electronic Multimeter.							
		CRO, DISPLAY DEVICES & RECORDERS							
		Introduction to CRO, Applications of CRO, Block Diagram of CRO, Cathode ray Tube							
UNI	T-V	(CRT), CRO Measurements-Voltage, Current, Phase angle & Frequency. Introduction to							
(10 l	Hrs)	Digital Display Units- CRTs, LEDs, LCDs, NIXIEs, ELs Comparison of Various Display							
		Devices, Introduction to Recorders, Types, Strip chart recorders, Circular Chart							
		Recorders, X-Y Recorders.							
		l '							
Text	Books	S:							
1	R K	Rajput., "Electrical & Electronic Measurement and Instrumentation," S Chand, New Delhi,							
1.	First	t Edition, 2020. ISBN: 978-93-856.							
2	Saw	hney A.K., "A Course in Electrical & Electronic Measurement and Instrumentation,"							
2.	Dha	npat Rai & Company Private Limited, New Delhi, 18th Edition, 2007.							
Refe	rence	Books:							
1	A C	ourse in Electronics and Electrical Measurements and Instrumentation J. B. Gupta Katson							
1.	Boo	ks 2013 Edition.							
2	Ran	gan, C.S., Sharma, G.R., Mani, V.S., "Instrumentation Devices and Systems," Tata							
2.	McC	Graw- Hill Publishing Company, New Delhi, 2 nd Edition, 2002.							

Γim		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			
Γim					R20
Γim		III B.Tech. I Semester MODEL QUESTION PAPER			
Γim		ELECTRICAL AND ELECTRONICS MEASUREMENTS			
Γim		ELECTRICAL AND ELECTRONICS ENGINEERING			
	e: 3 H	Irs. N	Iax. M	arks:	70 N
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	M
		UNIT-I			
1.	a).	Illustrate different types of Errors in measurements	1	3	7
	b).	Summarize different methods and modes of measurements	1	3	7
		OR			
2.	a).	Illustrate static characteristics of Instruments	1	3	7
	b).	Summarize generalized measurement system and its functional elements.	1	3	7
		UNIT-II			
3.	a).	Explain the principle of working of a PMMC instrument with neat diagram	2	3	7
	b).	Explain different types of damping torques in measuring instruments.	2	3	7
		Estd. 1980 OR AUTOMOBIO			
4.	a).	Illustrate construction and working electro dynamo meter type instrument.	3	3	7
	b).	Explain the operation of megger with neat diagram.	3	3	7
		UNIT-III			
5.	a).	Explain construction and working electro dynamo meter type wattmeter.	3	3	7
	b).	Illustrate induction type single phase energy meter.	3	3	7
		OR			
6.	a).	Discuss measurement of power with and without wattmeter.	3	3	7
	b).	Explain errors and compensations for energy meter.	3	3	7

7

7

3

3

4

4

UNIT-IV

Explain the operation of average responding type AC voltmeter

Explain the operation of rectifier type AC voltmeter

7.

a).

b).

		OR			
8.	a).	Explain Peak responding type voltmeter.	4	3	7
	b).	Explain briefly true value, RMS value with examples	4	3	7
		UNIT-V			
9.	a).	With neat diagram explain the working of CRO	5	3	7
	b).	Explain the terms CRTs, LEDs, LCDs, NIXIEs	5	3	7
		OR			
10.	a).	Describe how the following measurements can be made with the use of a CRO. (i) Frequency (ii) Phase angle.	5	3	7
	b).	Differentiate Strip chart recorders and circular chart Recorders	5	3	7

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

C	Code	Category	L	T	P	С	I.M	E.M	Exam			
B20E	EEM301	Minors	3			3	30	70	3 Hrs			
		POW	ER TRA					ON				
					gree cour	se in EEE	Ε)					
Course		ves: Students										
1.	1								Overhead system.			
2.		About mechanical design of transmission lines and insulator requirements.										
3.		ne performance				s of transr	nission li	nes.				
4.		ne different typ			-							
5.	About th	ne underground	d cables a	nd differ	ent subst	ations.						
Course	e Outcom	es: Students v	vill be ab	le to								
S. No				Outco	mes				Knowledge			
	C	D.C 1.A	C 4			1		1	Level			
1.		re D.C and A requirement	C transn	nission i	networks	andcorre	esponding	g conductor	K3, K4			
2.		e the mechanic						•	K3			
3.	Determ	ine the perforn	nance of s	hort, me	dium an	d long tra	nsmissior	lines	K3			
4.	Analyze	e theworking of	fD.C and	A.C Dis	tribution	systems			K3, K4			
5.	Explore	the undergrou	nd cables	and illu	strate di	fferent su	bstations		K3			
				SY	LLABU	JS						
	FI	LECTRICAL	SHPPI V	SVSTE	MS							
UNI						lv Scher	ne. Com	parison of	D.C. and A.C.			
(10 H												
`	*	Transmission, Comparison of Conductor Material in Overhead System, Kelvin's Law.										
	· ·											
	M	ECHANICAL	DESIG	OF O'	VERHE	AD LINE	ES					
UNIT	r-II Ma	ain componen	its of O	verhead	Lines,	Insulator	rs - Ty ₁	pes of Insu	lators, Potential			
(10 H	(rs) Di		-			•	_	•	ds of Improving			
`	Sti		, Sag in	Overhea	d Lines,	Calculati	on of Sa	g, Corona ef	fect, Skin effect,			
	Fe	rranti effect.										
	DI	ERFORMANO	TE OF T	D A NICIA	TCCION	IINES						
UNIT	'-III _{Cc}						n of ov	erhead Tran	smission Lines,			
(10 H	rs)								·			
	1 - 0	Performance of Short Transmission Lines, Medium Transmission Lines, End Condenser										

	Method, Nominal T Method, Nominal π Method, Long Transmission Lines, Generalized							
	circuit constants of a Transmission Line.							
	DISTRIBUTION SYSTEMS							
UNIT	Classification of Distribution Systems, Types of D.C. Distributors, D.C. Distribution							
	Calculations DC distributor fed at one end (concentrated loading) Distributor fed at both							
(10 H	ends (concentrated loading). Single phase A.CDistribution Calculations, Methods of solving							
	A.C. Distribution Problems.							
	UNDERGROUND CABLES AND SUBSTATIONS							
	Underground cables Construction of Cables comparison of overhead and underground							
UNIT	transmission system, Substation, Classification of substations, Comparison between outdoor							
(10 H	and indoor substation, Symbols for equipment in substation, Single bus bar arrangement in							
	substations, Earthing.							
	Substitutions, Euromag.							
Torrt D	a alvar							
Text B								
1.	Principles of Power systems by V.K. Mehta S. Chand Publications							
2.	Electrical power Systems by C.L. Wadhwa, New Age International, 2011							
Refere	nce Books:							
1.	A Textbook on Power System Engineering. Gupta, M.L. Soni, U.S. Bhatnagar, A. Chakrabarti.							
2	Generation, Distribution, utilization of Electrical Energy by C.L.Wadhwa, New Academic							
2.	Science,2011							

Estd. 1980 Autromotion

Course Code: B20EEM301

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

R20

III B.Tech. II Semester MODEL QUESTION PAPER

POWER TRANSMISSION AND DISTRIBUTION

ELECTRICAL AND ELECTRONICS ENGINEERING

Time: 3 Hrs. Max. Marks: 70 M

Answer ONE Question from EACH UNIT

All questions carry equal marks

Assume suitable data if necessary

		Assume suitable data ii necessary			
			CO	KL	M
		UNIT-I			
1.	a).	Explain the advantages of High Transmission Voltage.	1	3	7
	b).	Compare the volume of conductor material required for a d.c. 2-wire system and 3-phase, 3-wire system on the basis of equal maximum potential difference between one conductor and earth. Make suitable assumptions.	1	4	7
		OR			
2.	a).	Compare D.C. and A.C. Transmission lines	1	3	7
	b).	State and prove Kelvin's law for size of conductor for transmission. Discuss it's Limitations.	1	4	7
		ENGINEEDING COLLEGE			
		ENUNIT-II ERING COLLEGE			
3.	a).	Derive an Expression for the sag of transmission line conductor suspended between two supports of the same height.	2	3	7
	b).	A 132 kV transmission line has the following data: Wt. of conductor = 680 kg/km Ultimate strength = 3100 kg Safety factor = 2 Calculate the height above ground at which the conductor should be supported. Ground clearance required is 10 metres.	2	3	7
		OR			
4.	a).	Explain the methods to improve string efficiency.	2	3	7
	b).	In a 33 kV overhead line, there are three units in the string of insulators. If the capacitance between each insulator pin and earth is 11% of self-capacitance of each insulator, Calculate (i) the distribution of voltage over 3 insulators and (ii) string efficiency.	2	3	7
		UNIT-III			
5.	9)		3	3	7
٥.	a). b).	Explain the short transmission lines with phasor diagram. A 3-phase line delivers 3600 kW at a p.f. 0.8 lagging to a load. If the	3	3	7
	D).	A 3-phase fine derivers 3000 kw at a p.f. 0.0 tagging to a 10ad. If the	3	3	/

		sending end voltage is 33 kV, determine (i) the receiving end voltage (ii) line current (iii) transmission efficiency. The resistance and			
		reactance of each conductor are $5.31~\Omega$ and $5.54~\Omega$ respectively.			
		OR			
6.	a).	Derive the expressions for sending end voltage, current, power and p.f., transmission efficiency in a medium transmission line using nominal – T method and also draw the phasor diagram.	3	3	7
	b).	A 3-phase, 50-Hz overhead transmission line 100 km long has the following constants: Resistance/km/phase = $0.1~\Omega$ Inductive reactance/km/phase = $0.2~\Omega$ Capacitive susceptance/km/phase = $0.04 \times 10-4$ siemen Determine (i) the sending end current (ii) sending end voltage (iii) sending end power factor and (iv) transmission efficiency when supplying a balanced load of 10,000 kW at 66 kV, p.f. 0.8 lagging. Use nominal T method.	3	3	7
		UNIT-IV			
7.	a).	Draw and explain schematic diagram of radial and ring main distribution system.	4	3	7
	b).	A 2-wire d.c. distributor cable AB is 2 km long and supplies loads of $100A,150A,200A$ and $50A$ situated 500 m, 1000 m, 1600 m and 2000 m from the feeding point A.Each conductor has a resistance of $0.01~\Omega$ per 1000 m. Calculate the p.d. at each load point if a p.d. of $300~V$ is maintained at point A.	4	3	7
		OR			
8.	a).	Derive the expression for sending end voltage of A.C. distributor, Power factors referred to receiving end voltage and draw the phasor diagram.	4	4	7
	b).	A single phase a.c. distributor AB 300 metres long is fed from end A and is loaded as under: (i) 100 A at 0·707 p.f. lagging 200 m from point A (ii) 200 A at 0·8 p.f. lagging 300 m from point A The load resistance and reactance of the distributor is 0·2 Ω and 0·1 Ω per kilometer. Calculate the total voltage drop in the distributor. The load power factors refer to the voltage at the far end.	4	3	7
		UNIT-V			
9.	a).	Explain the construction of underground cable with a neat sketch.	5	3	7
—	b).		5	3	7
	D).	Compare overhead and underground transmission system.	3	3	,

		OR			
10.	a).	Explain the Single bus bar arrangement in substations with a neat diagram	5	3	7
	b).	Explain different types of earthing methods.	5	3	7

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

	Code	Category	L	T	P	С	I.M	E.M	Exam		
B20)EEM401	Minors	3			3	30	70	3 Hrs		
			BASIC	POWE	R ELEC	TRONIC	CS				
			(Min	or Degre	ee course	in EEE)					
Cours	se Objectiv	es: Students v	will learn								
1. About the history and applications of power electronics											
2. About power electronic switching devices and their characteristics											
3. About the principle of operation & performance of uncontrolled AC-DC convert							DC converte	ers			
4.	About the	e principle of	operation	& perfor	mance o	f DC-DC	converter	S			
5.		e operation of	of DC-A	Conver	rters and	the nec	essity of	Pulse Widt	h Modulation		
	(PWM)										
	O 1										
Cours	se Outcome	s: Students w	vill be abl	e to					T77 1 1		
S.No				Outco	me				Knowledge Level		
1.	Evnlore th	e importance	and applie	cations of	f Power	electronic	c		K3		
2.	1 11						K3				
3.		the performan			-				K3		
4.		e knowledge						ion	K3		
5.	_	e knowledge							K3		
	riequire tr	ie mie wieuge	0120110	2011,611		,4140115	- operation				
				SYL	LABUS						
	FU	NDAMENTA	ALS OF I	POWER	ELECT	RONICS	<u> </u>				
UN	IT-I Int	roduction-App	olication of	of Power	Electro	nics-Histo	ory of Po	wer Electro	nics-Types of		
(10	Hrs) Po	•									
	Spe	Specifications of Switches									
UNI	'T'-	POWER SEMICONDUCTOR DEVICES									
	Hrs) Die	Diode characteristics-Power diode types-Reverse recovery characteristics, Pow									
	MO	MOSFET and its V-I characteristics, IGBT and its V-I characteristics									
	DI	ODE DECE									
TINIT		DIODE RECTIFIERS									
	Introduction - single phase half wave and full wave rectifiers with R & RL-I										
(10	Phase full wave rectifier with R & RL - load - Average output voltage expressions output performance parameters - Numerical Problems										
	Out	put perioriiai	ice paraili	CIC15 - IN	umencal	1 TODICITI					

UNIT	DC-DC CONVERTERS (CHOPPERS)							
(10 H	Introduction - Step up and Step-down chopper - input and output voltage relationship - 1							
(101)	types of choppers and their operation - Numerical Problems							
	DC-AC CONVERTERS (INVERTERS)							
UNIT	Introduction- Principle of operation of Single-phase half bridge and full bridge Inverters							
(10 H	with R-load - Performance Parameters-Three phase Inverter with 180 ⁰ mode,							
	Introduction to Pulse Width Modulation (PWM)							
Text B	ooks:							
1.	Power electronics - P.S. Bimbhra- Khanna Publishers, 5 th Edition, 2014							
2.	ver Electronics: Devices, Circuits and Applications – M.H. Rashid, Prentice Hall of India,							
۷.	4 th edition, 2020.							
Refere	nce Books:							
1.	Power electronics - M.D. Singh & K.B. Kanchandhani, Tata McGraw - Hill Publishing							
1.	Company, 2nd edition							
2.	Power Electronics – Vedam Subramanyam, New Age International (p) Limited, Publishers.							

		Course C	ode: B	20EE	M40 1
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R20
		BASIC POWER ELECTRONICS			
		ELECTRICAL & ELECTRONICS ENGINEERING			
Гim	e: 3 H	Irs. N	Iax. M	larks:	70 N
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
			CO	KL	M
		UNIT-I			
1.	a).	Explain the history and applications of power electronics	1	3	7
	b).	Explain in detail about Design of Power Electronic Equipment	1	3	7
		OR			
2.	a).	Classify different types of Power Converters	1	3	7
	b).	Illustrate the Characteristics and specifications of power electronic switches	1	3	7
		Switches			
		UNIT-II			
3.	a.	Explain the static characteristics of MOSFET?	2	4	7
	b.	Classify Various types of power diodes and their applications	2	4	7
		OR AUTOMOMO			
4.	a).	Illustrate the V-I characteristics of a power MOSFET and explain different operating regions.	2	4	7
	b).	Describe about the IGBT? Enumerate the advantages of IGBT over Power-BJT and Power-MOSFET?	2	4	7
		UNIT-III			
5.	a).	Explain the working of three-phase half wave uncontrolled rectifier with relevant wave forms for 'R' load.	3	3	7
	b).	Infer the expressions for average and rms load voltages for a three-phase full-wave uncontrolled rectifier connected to a resistive load.	3	3	7
		OR			
6.	a).	A single-phase, full-wave, uncontrolled rectifier has a supply voltage is 110 V, 50 Hz. The load resistor is 25 Ω , Calculate: (a)The average	3	3	7

7

3

3

Infer the expressions for average and rms load voltages for a single-

phase half and full-wave uncontrolled rectifier connected to a resistive

voltage and current.

b).

		load.			
		UNIT-IV			
7.	a).	Explain the principle of operation and working of buck converter with relevant waveforms.	4	3	7
	b).	With the help of a neat circuit diagram and associated waveforms, Discuss the operation of Boost converter.	4	3	7
		OR			
8.	a).	Explain the operation of step-down chopper and derive the output equation?	4	3	7
	b).	Explain various types of choppers in DC - DC Circuits	4	3	7
		UNIT-V			
9.	a).	Explain the Principle of operation of Single-phase half bridge Inverters with waveforms for R-Load	5	3	7
	b).	Explain the Principle of Three-phase Three phase Inverter with 180 ⁰ mode with waveforms for R-Load	5	3	7
		OR			
10.	a).	Explain the Principle of operation of Single-phase full-bridge Inverters with waveforms for R-Load	5	3	7
	b).	What are pulse width modulated inverters? Explain the advantages of PWM techniques in Inverter.	5	3	7

CO-COURSE OUTCOME Estd. 1980 KL-KNOWLEDGE LEVEL

M-MARKS