

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada) Accredited by NAAC with 'A+' Grade, Accredited by NBA (UG: Civil, CSE, ECE, EEE, IT & ME) Recognised as Scientific and Industrial Research Organisation SRKR MARG, CHINA AMIRAM, BHIMAVARAM – 534204 W.G.Dt., A.P., INDIA

Estd:1980

LIST OF OPEN ELECTIVES OFFERED BY VARIOUS DEPARTMENTS TO OTHER DEPARTMENTS IN IV YEAR I SEMESTER OE-IV

Offered by	Course Code	Course Name	Offered to		
ARTIFICIAL INTELLIGENCE & DATA SCIENCE	B20ADOE05	Embedded Systems	CE, EEE & ME		
CIVIL ENGINEERING	B20CEOE06	Green Buildings	AIDS, CSBS, CSE, ECE, EEE, IT & ME		
COMPUTER SCIENCE & BUSINESS SYSTEMS	B20CBOE05	Bigdata Analytics	CE, ECE, EEE & ME		
COMPLITED SCIENCE	B20CSOE10	Big Data Analytics	CE ECE EEE & ME		
COMPUTER SCIENCE &	B20CSOE11	Deep learning	CE, ECE, EEE & NIE		
ENGINEERING	B20CSOE12	Internet of Things	CE, EEE & ME		
ELECTRONICS &	B20ECOE07	Introduction to VLSI Technology	AIDS, CE, CSBS, CSE, EEE, IT & ME		
ENGINEERING 198	B20ECOE08	Embedded Systems & IOT Applications	CE, EEE & ME		
ELECTRICAL & ELECTRONICS ENGINEERING	B20EEOE05	Introduction to sensors and transducers	AIDS, CE, CSBS, CSE, ECE, IT & ME		
INFORMATION TECHNOLOGY	B20ITOE06	Mobile Computing	CE, ECE, EEE & ME		
	B20MEOE10	Project Management	AIDS CE CSPS CSE		
FNGINEEDING	B20MEOE11	Nano Technology	AIDO, CE, CODO, COE, FCF FFF & IT		
ENGINEEKING	B20MEOE12	Additive manufacturing	EUE, EEE & II		
MATHEMATICS AND HUMANITIES	B20BSOE04	Fuzzy sets and fuzzy logic	AIDS, CE, CSBS, CSE, ECE, EEE, IT & ME		

C	ode	Category	L	Т	Р	С	I.M	E.M	Exam		
B20A	DOE05	OE	3			3	30	70	3 Hrs.		
EMBEDDED SYSTEMS											
(Offered by AIDS)											
	(Offered to CE, EEE & ME)										
Course Objectives:											
1.	1. Technology capabilities and limitations of the hardware, software components.										
2.	2. Methods to evaluate design trade-offs between different technology choices.										
3.	Design	Methodologies.									
4.	To mot	ivate students to	do progran	nming aı	nd experi	ment with	the vario	us cloud con	nputing		
	enviror	ments.									
9	0.1		1								
Cour	se Outc	omes: After com	pletion of t	the cours	se, the stu	dent will l	be able to				
S.No				Outco	ome				Knowledge Level		
1	Under	stand the basics of	of an embe	dded sys	tem				K2		
2.	Progra	m an embedded	system.	aaca sys					K3		
3.	Design	. implement and	test an em	bedded s	system.		7		K4		
4.	Identif	y the unique cha	racteristics	of real-t	ime syste	ems.			K3		
	Explai	n the general stru	acture of a	real-time	e system,	and challe	enges of r	eal-time			
5.	system	is.	F	IGIN	IFFD		.	GE	K3		
		A Cardo			ALITC	NOMO	IC.				
		Estd. 1980		SY	LLABUS	5	4 4 4				
]	ntroduction to	Embedded	l system	s: What i	s an embe	dded syst	tem Vs. Gen	eral computing		
UNI	T-I s	ystem, history, o	classificatio	on, majo	r applica	tion areas,	and purp	pose of embe	edded systems.		
(10H	Irs) (Core of embedd	led system	, memo	ory, sens	ors and a	ctuators,	communica	tion interface,		
	e	mbedded firmw	are, other s	ystem co	mponent	s, PCB an	d passive	components	•		
		B-bitmicrocontr	oller's ar	chitectu	re: Ch	aracteristic	es, quali	ty attribute	s application		
UNI	T-II s	pecific, domain	specific,	embedde	ed syster	ns. Factor	rs to be	considered	in selecting a		
(10 H	Hrs) (controller, 8051 architecture, memory organization, registers, oscillator unit, ports, source									
	(urrent, sinking c	urrent, des	ign exan	ples.						
			1.11	<u> </u>	1 .	·		1	1.1 1		
UNI	Г-Ш	KIOS and Scr	eauling,	Jperatin	g basics	, types, I	CIUS, ta	sks, process	and threads,		
(10 I	Hrs)	abaduling	and multi	tasking,	types of	or muninas	sking, no	on-preemptiv	e, preempuve		
	2	cheduning.									
	r	Task communic	ation of P'	ГОЅ ऽ ь	ared mer	nory nine	s memor	v manned of	viects message		
UNI	Г-IV г	assing meer		1e m	ailhox	signaling	r = RPC	y mapped of	ockets task		
(10)	Trs)	ommunication/s	vnchroniza	tion issu	es racin	a deadloc	k live log	k the dining	nhilosonher's		
		oroblem	y non on Za			5, ucauloc	x, 11 v C 100	, une unning	philosopher s		

		The producer -consumer problem, Reader writers problem, Priority Inversion, Priority									
UNI	Г-V	ceiling, Task Synchronization techniques, busy waiting, sleep and wakery, semaphore,									
(10 H	mutex, critical section objects, events, device, device drivers, how to clause an RTOS,										
	Integration and testing of embedded hardware and fireware.										
Textb	ooks:										
1.	Intro	duction to embedded systems Shibu. K.V, TMH,2009.									
2.	Emb	edded Software Primer, David Simon, Pearson.									
Refer	ence I	Books:									
1	Ayal	a & Gadre: The 8051 Microcontroller & Embedded Systems using Assembly and									
1.	C,CI	ENGAGE									
2.	Emb	edded Systems, Rajkamal, TMH,2009.									
3.	The	8051 Microcontroller and Embedded Systems, Mazidi, Mazidi, Pearson									

Г

Code		Category	L	Т	Р	С	IM	EM	Exam		
B20C	EOE06	OE	3			3	30	70	3 hrs.		
				1							
	GREEN BUILDINGS										
	(Offered by CE)										
	(Offered to AIDS_CSBS_CSE_ECE_EFE_IT & MECH)										
Course	Course Objectives:										
1	To introduce students to the concept of a 'Green' Building										
2	To familiarize students with the 'voluntary environmental building rating systems' (VERS)										
2	opera	ting in India.			5		0	δ.	· ()		
3	To co	ommunicate the logic	behind	the rating	g categor	ies in IG	BC, GR	IHA, LE	ED, EDGE, and		
5	WEL	L rating systems.			0			,			
Course	Outco	mes: After completion	n of the c	ourse, the	student v	vill be ab	le to				
S. No.				Outcome					Knowledge		
									Level		
1	Emph	asise the importance	of site se	election a	ind prepa	ration in	sustainab	oility of	WO.		
	built e	environment.							K2		
2	Sugge	est ap <mark>propriate</mark> cons	truction	materials	s and fi	nishes tl	hat meet	green	КЭ		
	requir	ements of various rati	ng systen	ns.					K2		
3	Elabo	rate on the design o	opti <mark>ons a</mark>	vailable	to <mark>co</mark> nsei	ve energ	gy and w	ater in	K2		
	buildi	ngs during their opera	tion.	GINE	ERIN	<u>IG CC</u>	<u>)LLE(</u>		K2		
4	Relate	e the building design	to the qu	ality of th	he indoor	environ	nent and	specify	К2		
	electro	o-mechanical interven	tions for	achieving	g occupan	t comfort	• • • •	C			
5	Parap	hrase the requirement	its of v	arious vo	oluntary	green ra	ting syste	ems of	К2		
	buildi	ngs for achieving vari	ous level	s of rating	5.						
				SVII	ARUS						
		Site Selection and Pr	anaratio	51LL	ADUS						
UNI	Г- Т	Typical features of G	reen Buil	dings, be	nefits of g	preen bui	ldings – S	Sustainab	le Site Selection		
(8 H	rs)	Preserving the natural resources maximising comfort integration of daylight optimising									
(0	-~/	ventilation: rainwater harvesting, recharge, reuse strategies									
		, ,		<i>U</i> , 1		U					
		Appropriate Materia	als and D	esign:							
		Renewable Materials	, FSC (l	Forest St	ewardship	o Counci	l) certific	cation –	Rapid Renewal,		
UNIT	-II	bamboo, eucalyptus,	poplar, i	ubberwo	od, linole	um – Lo	w energy	y walling	; rammed earth,		
(8 H	rs)	stabilised mud, Adob	e-Post (Consumer	, Post In	dustrial V	Waste rec	cycling -	Hollow blocks,		
		lime, pozzolona ceme	ents, agri	residues	– Ferro c	ement, F	erro conc	rete – Al	ternative roofing		
		systems; Vaults, Dom	es High a	albedo pa	ints						
	ı										
UNIT	-III	Water & Energy Con	nservatio	on in Bui	ldings:						

(8 I	Hrs)	Need for energy conservation in buildings, various forms of energy used in buildings,							
		embodied energy of materials, energy used in transportation and construction processes -							
		Water Conservation systems in Buildings, water harvesting in buildings, waste to energy in							
		residential complexes, Modular wastewater treatment systems							
		Indoor Environment Quality							
		Weather data collection, temperature, humidity, wind speed, direction-Climate change and							
UNI	Г- IV	Built Environment, how they affect each other - Occupant Comfort, design, codes, thermal							
(8 I	Hrs)	comfort, lighting comfort, acoustic comfort - Mechanical Ventilation and Air Conditioning							
		cepts – Energy Efficient Lighting Design – Passive cooling strategies, green roofs – Case							
		studies from actual buildings - Building Automation and BMS							
		Measuring Sustainability 'voluntary environmental building rating Systems'							
UNIT-V		National Building Code of India - LEED Introduction, process, rating system, variants and							
(8]	Hrs)	levels-GRIHA Introduction, process, rating system, variants and levels-IGBC Introduction,							
		process, rating system, variants and levels-							
Text]	Books:								
1	Alterr	ative Building Materials and Technologies, K.S.Jagadish, B.V.Venkatarama Reddy and							
	K.S.N	anjunda Rao, 2nd Edition, New Age International							
2	GRIH	A Manual and Reference Guides							
3	LEED	Reference Guides							
4	IGBC	Reference Guides							
Refer	ence Bo								
1	Sun, V	Vind, and Light: Architectural Design Strategies, Mark DeKay, G.Z.Brown, 3rd Edition, John							
1	Wiley	& Sons							
2	Nation	al Building Code of India (2016), Bureau of Indian Standards.							
3	https://	/app.edgebuildings.com/user/welcome							

Sub	ject Code	Category	L	Т	Р	С	I.M	E.M	Exam	
B20	CBOE05	OE	3			3	30	70	3 Hrs.	
	BIG DATA ANALYTICS									
	(Offered by CSBS)									
	(Offered to CE, ECE, EEE & ME)									
Cour	Course Objectives:									
1	1 To provide an overview of an exciting growing field of Big Data analytics.									
2	To Introduce the tools required to manage and analyze big data like Hadoop Map Reduce, Pig &									
	Hive etc	,								
Cour	se Outco	nes: After com	pletion of	the cours	e, the stuc	lent will be	able to			
S.No				Outc	ome				Knowledge	
	TT 1	1.1			1.1	1 6 1	1 1 01		Level	
1	Underst	and the existi	ng techno	logies ai	nd the ne	ed of dist	tributed file	es	K2	
	Systems	to analyze the	Big Data	MonDo	duce to he	ndla tha Di	a Dotos and			
2	identify	the need of int	erfaces to r	erform I	$\sqrt{0}$ operation	ions in Had	g Data, allu		K2	
	Implem	ent and analy	ze Man-I	Reduce	programm	ing mode	l for bette	r		
3	ontimiz	ation on Big D	ata	Coulee	programm	ing mode		<i>•</i> 1	K3	
4	Apply t	ne stream proce	essing tech	niques to	analyze r	eal-time da	ta streams		К3	
_	Identify	the need of M	odern tools	s, viz., Pi	g and Hiv	e and its a	oplications of	on Big		
5	Data Ai	alytics			AUTO	NOMOU	5	Ũ	K 2	
	1	LS04.1700								
				SY	LLABUS					
	In	troduction to	Big Data :	Big Data	a (BD) De	finition, C	haracteristic	s of Big	Data (Volume,	
UNI		elocity, Verity,	Veracity,	Validity	etc.), Ap	plications	of BD, Typ	bes of Da	ta: Structured,	
(10]	Hrs)	n-Structured an	nd Semi-S	structured	a. Hadooj	p, Data in	Hadoop v	vs Tradit	ional software	
(202	(F	DBMS, Data	in Wareh	ouse). W	orking v	with Big I	Data: Goog	le File S	System (GFS),	
	Н	adoop Distribut	ed File Sy	stem (HI	DFS), Buil	ding blocks	s of Hadoop	-v1 and H	Hadoop-v2.	
			X7 •		1	• 1	() (D 10)		1 1 1 1	
	H	JFS Read & V	Write, Ana	tomy of	mapreduc	e job run	(MRVI& N	IRV2), JO	b scheduling,	
UNI	T-II	unie & Sort, co	for mon	raduaar	Monrodu	a Tunas	and Forma	ta Writa	bla Interface	
(10 I	Hrs) $\left \begin{array}{c} \mathbf{J} \mathbf{a} \\ \mathbf{w} \end{array} \right $	va Interlaces	roble and	reduce:	Mapredu	ce Types	and Forma	ts, writa	tives Becord	
		Writable Comparable and comparators, Writable wrappers for Java primitives, Record								
	K	cauers, Record	willers.							
	м	an Reduce n	noramino	: Implen	nentation	of Manner	Reducer a	and Drive	er manreduce	
UNI		ordcount exami	nle. Matrix	multin	ication usi	ng manred	uce. Friend	s of Frier	ds algorithm	
(10]	Hrs) $\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$	ombiner. Partiti	oner. Joins	: Map si	de join &	Reduce sid	e join.			
	Combiner, i artitioner. Johns. Map side John & Reduce side John.									

		Stream Processing: Mining data streams: Introduction to Streams Concepts, Stream Data						
UNIT-IV Model and Architecture, Stream Computing, Sampling Data in a Stream, Filtering S								
(8 Hrs) Blooms Filter, Counting Distinct Elements in a Stream: FM Algorithm, Estimotecture Moments, Counting 1's in a Window: DGIM Algorithm, Decaying Window.								
		Frameworks and Applications: Hadoop Echo System, Applications on Big Data Using						
UNI	Γ-V	Pig, Pig Architecture, PigLatin, Data processing operators in Piglatin, Applications on Big						
(12 H	Hrs)	Data Using Hive, Hive Architecture, HiveQL, Querying Data in Hive, fundamentals of						
		HBase, HBase architecture and ZooKeeper.						
Text l	Books	:						
1.	Had	oop: The Definitive Guide by Tom White, 3rd Edition, O"Reilly						
Refer	ence	Books:						
1.	Had	oop in Action by Chuck Lam, MANNING Publ						
C	Had	oop for Dummies by Dirk deRoos, Paul C.Zikopoulos, Roman B.Melnyk, Bruce Brown						
Ζ.	andH	Rafael Coss						
e-Res	ource	s:						
1.	Had	oop: https://hadoop.apache.org/						
2.	Hive	e: https://cwiki.apache.org/confluence/display/Hive/Home/						
3.	Pigla	atin: https://pig.apache.org/docs/r0.7.0/tutorial.html						

-	Joue	Category	L	Т	Р	С	I.M	E.M	Exam		
B20C	CSOE10	OE	3	-		3	30	70	3 Hrs.		
	BIG DATA ANALYTICS										
(Offered by CSE)											
	(Offered to CE, ECE, EEE & ME)										
Course	Course Objectives:										
1.	1. To optimize business decisions and create competitive advantage with Big Data analytics										
2.	. To learn to analyse the big data using intelligent techniques										
3.	To introdu	ce programm	ning tools H	PIG & H	IVE in H	adoop ech	io system				
Course	e Outcome	s: After com	pletion of	the cours	se, the stu	ident will	be able to)			
S.No				Outco	ome				Knowledge Level		
1.	Illustrate b transportat	ig data challe	enges in di and medici	fferent d ne	lomains i	ncluding s	ocial mee	dia,	К3		
2.	Design and	d develop Ha	doop						K2		
3.	Identify the characteristics of datasets and compare the trivial data and big K2										
4.	Design and develop Pig Programming and running pig scripts in different modes K3										
5.	Identify th	e Hive Data	types and I	HBase st	orage me	chanism			K2		
I			FI	IGIN	IFFD		011	FGE			
				SY	LLABUS	NONO	IC				
UNII	Intro	duction: Big	data defini	ition and	l types of	data, Cha	racteristi	cs of big dat	a, Applications		
(12 H	rs) of bi	g data, data i	n warehou	se and da	ata in Ha	doop. Diff	erent Op	en Source Te	echnologies.		
UNIT	-II Had	oop: History	of Hadoop	, the Ha	doop Dis	tributed F	ile Syster	n, Compone	nts of Hadoop,		
(10 H	rs) $ _{HDF}^{Hauc}$	HDES.									
		5.									
UNIT-	-III Man	Reduce: Ho	ow Man R	educe W	Vorks. Ai	natomy of	a Man F	Reduce Job 1	un. Combiner		
(10 H	rs) Failu	res, Shuffle	and Sort. P	artitioni	ng, Paral	lel copvin	g with dis	stributed con	ying.		
					8,		5	<u> </u>	5 6		
	Pig:	Hadoop Pro	gramming	made e	easier, A	rchitecture	e, Pig La	atin applicat	ion flow, data		
	-IV types	s and syntax,	Local and	l distrib	uted mod	es of runi	ning pig s	scripts, how	to execute pig		
(08 Hrs) program.							10				
TINIT	Hive	: Architectu	re, Data ty	pes, Cre	ating and	d managin	g tables	with hive, J	oins, Indexing,		
	-v Intro	duction to 1	HBASE a	nd HBa	se stora	ge mecha	nism, Rl	DBMS vs l	HBase, HBase		
(10 П	Com	mands									
Text B	ooks:										

1	Tom V	White,	"Hadoop:	The	Definitive	Guide",	Third	Edition,	O'reilly	Media,	Fourth	Edition,
1.	2015.											

	2013.
Refer	ence Books:
1.	Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams
	with Advanced Analytics", John Wiley& sons, 2012.
2.	Paul Zikopoulos, DirkdeRoos, Krishnan Parasuraman, Thomas Deutsch, James Giles, David
	Corrigan, "Harness the Power of Big Data: The IBM Big Data Platform", Tata McGraw Hill
	Publications, 2012.
2	Arshdeep Bahga and Vijay Madisetti, "Big Data Science & Analytics: A Hands On Approach ",
5.	VPT, 2016.
4	Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science nd its
4.	Applications (WILEY Big Data Series)", John Wiley & Sons, 2014.

C	ode	Category	L	Т	Р	С	I.M	E.M	Exam	
B200	CSOE11	OE	3	-		3	30	70	3 Hrs.	
		1				L				
				DEEP	LEARN	ING				
	(Offered by CSE)									
	(Offered to CE, ECE, EEE & ME)									
Course	Course Objectives:									
1	Understand and recollect basic concepts of machine learning									
2	Understand concepts of deep feed forward network mechanisms									
3	Understa	nd and analyz	ze the con	cepts of C	NN, RNN	models				
4	Study the	concepts of	auto enco	ders and o	ptimizatio	on techniqu	ies			
5	Study and	analyze the	different	DNN arch	itectures					
	L									
Course	Outcome	s: After com	pletion of	the course	, the stude	ent will be	able to			
C N-					COME				Knowledge	
5. NO				0010	COME				Level	
1	Demonst	rate the basic	concept of	of Machine	e learning				K2	
2	Apply the	e concepts of	deep feed	l forward i	networks.		7		K3	
3	Apply the	e concepts of	CNN & I	RNN mode	els				K3	
4	Explain a	nd apply opt	<i>imization</i>	technique	s <mark>and aut</mark> o	encoders.			K3	
5	Learn abo	out different	DNN mo	lels and ap	o <mark>ply</mark> that k	nowledge	to differen	nt	V2	
5	applicatio	ons.	6	ENGI	VEER	ING (OLLE	GE	K.J	
		E-t-L 400	~		AUTO	NOMO	K			
		ESU. 170	0	SY	LLABUS	5				
	Fun	damentals C	concepts o	of Machin	e Learnir	ıg				
UNIT	-I Hist	orical Tren	ds in De	ep Learr	ning-Mac	hine Lea	rning Ba	sics: Learn	ing Algorithms-	
(12 H	rs) Supe	ervised and U	Insupervis	sed Trainii	ining, Linear Algebra for machine Learning, Testing, Cross-					
	Valie	dation, Dime	ensionality	y reductio	n, Over/U	Jnder-fitti	ng, Hyper	parameter	s and validation	
	sets,	Bias, Varian	ce, Regul	arization					_	
UNIT	-II Deel	o Feed Forw	ard Netw	orks						
(10 H	rs) Deel	o feed forw	ard netw	orks-Intro	duction,	Various A	ctivation	Functions,	error functions-	
``	Regi	ilarization fo	r Deep lea	arning-Ear	ly Stoppir	ng, Drop o	ut.			
				-				<u> </u>		
UNIT	III	volutional 1	Neural N	etworks	And See	quence N	lodeling	Convolutio	onal Networks:	
(10 H	rs) $\begin{bmatrix} Conv \\ c \end{bmatrix}$	volutional op	eration- P	'ooling- No	ormalizati	on,	C1			
	Sequ	ience Model	ing: Recu	rrent Neur	ral Networ	rks, The L	ong Short-	I erm Mem	ory.	
	. .				1					
UNIT	IV) Encoders a		nization A	Algorithm	S	···· ·	eineties f	Deer Lee	
(08 H	rs) Auto	encoaers -	Auto enc	ouers: uno	uer compl	ete, denoi:	sing, optin	mzation for	Deep Learning:	
	grad	ient descent,	stochastic		uescent, II	min batch		escent,		

UNIT	-V More Deep Learning Architectures & Applications								
(10 H	rs) Alexnet, ResNet, Transfer learning, Sentiment Analysis using LSTM, Image Segmentation								
TEXT	BOOK:								
1	Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016 (available at								
1.	ttp://www.deeplearningbook.org)								
2	Charu C Agarwal, "Neural Networks and Deep Learning", IBM T. J. Watson Research Center,								
2.	International Business Machines, Springer, 2018								
REFE	RENCE BOOKS:								
1.	Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012								
2	Michael Nielsen, "Neural Networks and Deep Learning", Online book, 2016								
2.	(http://neuralnetworksanddeeplearning.com/)								
2	Li Deng, Dong Yu, "Deep Learning: Methods and Applications", Foundations and Trends in Signal								
5.	Processing, 2013.								
4	Christopher and M. Bishop, "Pattern Recognition and Machine Learning", Springer Science								
4.	Business Media, 2006.								
5.	Jason Brownlee, "Deep Learning with Python", ebook, 2016								
6	N. D. Lewis, "Deep Learning Step by Step with Python: A Very Gentle Introduction to Deep								
0.	Neural Networks for Practical Data Science, 2016.								
7	Chris Albon, "Machine Learning with Python Cookbook-practical solutions from preprocessing to								
7.	Deep learning", O'REILLY Publisher, 2018								
Useful	Reference Links:								
1	https://medium.com/nybles/create-your-first-image-recognition-classifier-using-cnn-keras-and-								
1.	tensorflow-backend-6eaab98d14dd								
2	https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-								
2.	scientists/								
3.	https://www.geeksforgeeks.org/cross-validation-machine-learning/								
4.	https://www.geeksforgeeks.org/activation-functions-neural-networks/								
5.	https://towardsdatascience.com/sentiment-analysis-using-lstm-step-by-step-50d074f09948								
6	https://medium.com/@lamiae.hana/a-step-by-step-guide-on-sentiment-analysis-with-rnn-and-lstm-								
0.	3a293817e314								
7.	https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23								
8.	https://d2l.ai/chapter_natural-language-processing-applications/sentiment-analysis-rnn.html								

CodeCategoryLTPCI.ME.M							Exam				
B20	CSOE12	2 OE	3			3	30	70	3 Hrs.		
				•							
	INTERNET OF THINGS										
	(Offered by CSE)										
	(Offered to CE, EEE & ME)										
Cou	rse Obje	ctives:									
1.	To unde	erstand building	blocks of I	oT and t	heir chara	acteristics					
2.	To Kno	w various archit	ectures and	l protoco	ols in IoT	and securi	ity issues				
3.	To use a	cloud services fo	r data anal	ytics in I	loT appli	cations					
4.	To deve	lop IoT applicat	ions using	Arduino	and Ras	pberry pi					
Cour	se Outco	mes:									
C N				0.4					Knowledge		
5. NO				Outco	ome				Level		
1.	Study v	arious Designs o	of IoT and I	IoT arch	itectures				K2		
2	Illustrat	e various comm	unication p	rotocols	in IoT				K3		
3	Use of v	various sensors a	nd Actuate	ors in Io	F applicat	tion <mark>s a</mark> nd I	mplemen	t IoT	K2		
	applicat	ions using Ardu	ino.						K3		
4	Analyse	dat <mark>a in</mark> IoT app	lications.						K4		
5.	Analyse	various security	y issues Io	Г аррlica	tions.				K4		
		New Street	η 📃								
			E	SY	LLABUS	SNGC	.OLLI	EGE			
		Estd. 1980			AUTO	NOMO	JS				
		Introduction to	Internet	of Thing	gs: Defin	ition & Ch	naracteris	tics of IoT, P	hysical design		
TIN	тт т	of IoT-Things in	n IoT, IoT	protoco	ls, Logic	al Design	of IoT-	OT Function	al Blocks, IoT		
	11-1 Urc)	Communication	Models &	API's, I	oT levels	and deplo	yment te	mplates.			
(9)	115)	IoT Network Architecture and Design: Comparing IoT Architectures, A Simplified IoT									
		Architecture.									
LINI	T_II	Communication	n Techn	ologies:	wired	Commu	nication	Technolog	ies, wireless		
(01	Hrs)	Communication Technologies.									
	115)	Message Comn	nunication	Protoco	ols for Co	onnected l	Devices	- CoAP, XM	IPP, MQTT.		
		IOT Physical d	evices and	l Endpoi	i nts: Basi	c building	blocks o	f an IOT dev	ice.		
LINI	т-ш	Sensors, Partic	ipatory se	nsing, F	RFIDs: S	ensor Tech	nnology,	Actuator, Ra	dio Frequency		
(10	Hrs)	Identification te	chnology.								
(10	1115)	Programming	with Ard	uino: F	eatures of	of Arduin	o, Comp	onents of A	rduino board,		
		Arduino IDE, C	ase Studies	s: Traffic	control s	system, DI	HT Senso	r with Arduir	10.		
UNI	T-IV	Data Acquiring	g, Organis	sing, Pro	ocessing	and Anal	ytics: In	troduction, D	ata Acquiring		
(91	Hrs)	(rs) and storage, Organising the Data, Transaction, Business Processes, Analytics, Knowledge									

	Acquiring, Managing and Storing Processes.								
TINIT	IoT Privacy, Security and Vulnerabilities Solutions: Vulnerabilities, Security								
	I-V Requirements and Threat Analysis, Identity management and establishment, Access								
(91	irs) control secure message communication.								
	Case studies inustrating for Design: Home Automation, Environment, Agriculture								
T (1									
Text	Books:								
1.	Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Pres 2015.								
	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things								
2.	- David Hanes, Gonzalo Salgueiro, Patrick Grossetete Robert Barton, Jerome Henry. 24750								
	Copyright© 2017 Cisco Systems, Inc. Published by: Cisco Press 800 East 96th Street.								
Refer	ence Books:								
1	Internet of Things: Architecture and Design Principles by Raj Kamal, McGraw Hill Education								
1.	private limited, 2017.								
2.	Internet of Things, Jeeva Jose, Khanna Publishing; First edition (2018).								
2	Designing the Internet of Things, Adrian McEwen and Hakim Cassimally, Wiley, 1 st edition,								
3.	2014.								
4.	Getting Started with the Internet of Things Cuno Pfister, O'reilly. 2011								
5.	Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O' Reilly (SPD), 2014.								
e-Res	ources: ENGINEERING COLLEGE								
1.	Introduction to Internet of Things, https://swayam.gov.in/nd1_noc20_cs66/preview								
2	An Introduction to Programming the Internet of Things(IoT) specialization,								
۷.	https://www.coursera.org/specializations/iot								

CodeCategoryLTPCI.ME.MExa								Exam		
B20E	B20ECOE07 OE 3 3 30 70							70	3 Hrs.	
	INTRODUCTION TO VLSI TECHNOLOGY									
				(Offer	ed by E	CE)				
		(Offe	ered to AII	DS, CE,	CSBS, C	SE, EEE,	IT & M	E)		
Cours	se Object	ives:								
1.	To intro	duce various f	abrication s	steps of I	MOS tran	sistors and	d their ele	ctrical proper	rties.	
2.	To impl	ement the stick	c diagrams	and layo	outs using	CMOS/B	i-CMOS	design rules.		
3.	To expl designs.	ain MOS tech	nology in	terconne	ction as	circuits, s	scaling m	iodels, static	and dynamic	
Cours	e Outcon	nes: After com	pletion of	the cours	se, the stu	dent will l	be able to		T	
S.No				Outc	ome				Knowledge	
1	A 1	.1		1.5.1	• .•		<u></u>	•.	Level	
1.	Analyze	the Electrical	properties	and Fabi	rication p	rocesses o	$\frac{1}{1}$ MOS ci	rcuits.	<u>K3</u>	
2.	Design rules.	the layouts of	various N	10S circ	cuits by	applying t	he conce	pt of design	K4	
3.	Interpre	t the basic MO	S circu <mark>it c</mark> o	oncepts,	static and	l dynamic	CMOS lo	ogic designs	K2	
4.	Interpre	t va <mark>rio</mark> us s <mark>cali</mark> r	ng models a	and their	impact o	n scaling o	of MO <mark>S c</mark>	ircuits.	K2	
			83							
			ν 💻	SY.	LLABUS	5				
	In	troduction: In	ntroduction	to IC	Fechnolo	gy, Fabric	ation pro	ocess: NMOS	s, PMOS and	
		AOS. Ids versu	is Vds Rela	ationship	os, Aspec	ts of MOS	transisto	r Threshold V	/oltage, MOS	
UNI	I-I tra	transistor Transconductance, Output Conductance and Figure of Merit. NMOS Inverter,								
(9 H)	rs) Pu	Pull-up to Pull down Ratio for NMOS inverter driven by another NMOS Inverter, and								
	th	Latch up in CMOS circuits. Comparison between CMOS and Pi CMOS technology								
	La	ich-up in CMC	JS circuits,	Compa	ison bety			-CMOS tech	lology	
	М	OS and Ri-C	MOS Circ	nit Dec	ion Proc	esses Mi	S I aver	s Stick Diag	rams Design	
UNIT		iles and Lavor	it. General	observa	tions on	the Design	rules ?	um Double M	Metal. Double	
(9 H	rs) Po	lv. CMOS/Bi	CMOS rul	es. 1.20	m Doubl	e Metal.	Double F	Poly CMOS	rules. Lavout	
(*	Di	agrams of NA	ND and NO	OR gates	and CM	OS inverte	er.			
				8						
	Ba	sic Circuit (Concepts:	Sheet R	esistance	, Sheet R	esistance	concept app	olied to MOS	
UNIT	-III tra	nsistors and I	nverters, A	rea Cap	acitance	of Layers	, Standar	d unit of cap	pacitance, The	
(10 H	(rs) De	elay Unit, Inve	rter Delays	, Propag	ation Del	ays, Wirir	ig Capaci	tances, Choic	e of layers.	
UNIT	-IV Sc	aling of MO	S Circuit	s: Scali	ng mod	els, Scalii	ng factor	s for device	e parameters,	
(9 H	rs)	mitations of S	Scaling on	substra	te dopin	g, Miniatu	irization,	Interconnect	and contact	
(Re	sistance, Subtl	nreshold cu	rrents ar	nd curren	t density				

	(CMOS Combinational and Sequential logic circuit design:							
	:	Static CMOS Design: Complementary CMOS and its static properties, Ratioed logic, Pass							
TINIT	T V	Transistor logic- Design of logic gates.							
		Dynamic CMOS Design: Basic principles, speed and power dissipation of dynamic logic,							
(9 П	115)	Issues in dynamic logic- charge leakage, charge sharing, Static latches and registers-							
]	Latches versus registers, The bistability principle, SR- Flip flops, Multiplexer based							
]	latch .							
Text	Books:								
1	Essent	ntials of VLSI Circuits and Systems By Kamran Eshraghian, Douglas and A. Pucknell and							
1.	Shole	Eshraghian, Prentice-Hall of India Private Limited, 2005 Edition.							
2	Digita	Digital Integrated Circuits, Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic,2nd							
Ζ.	editior	n, 2016							
Refer	ence Bo	ooks:							
1	FPGA	Based System Design - Wayne Wolf, Pearson Education, 2004, Technology and							
1.	Engineering								
2	CMOS	S Digital Integrated Circuits Analysis and Design, Sung-Mo Kang, Yusuf Leblebici, Tata							
۷.	McGra	McGraw Hill Education,2003.							
e-Res	ources:								
1.	https://www.engineersgarage.com/vlsi-technology-an-overview/								
2.	https://www.tutorialspoint.com/vlsi_design/vlsi_design_digital_system.htm								
2	https://	/www.powershow.com/viewfl/e5a26-							
5.	ZDc17	Z/Lecture_4_Design_Rules_Layout_and_Stick_Diagram_powerpoint_ppt_presentation							

(CodeCategoryLTPCI.ME.MExam								
B20	ECOE08	OE	3			3	30	70	3 Hrs.
			Embedde	d Systen	ns and Io	T Applic	ations		
	(Offered by ECE)								
	(Offered to CE, EEE & ME)								
Cour	Course Objectives:								
1.	To mal Commu	te students far	niliar with ols	the ba	asic conc	cepts of e	embeddec	l system ar	chitecture and
2.	Expose	the students to t	he concept	s of inter	rconnecti	ons betwe	en the phy	ysical device	s and cloud.
3.	Students solution	s should be ed s.	ucated to	design d	& develo	p IoT De	vices for	addressing	real time
Cour	se Outco	mes: After com	pletion of	the cours	se, the stu	dent will l	be able to		
S.No				Outco	ome				Knowledge Level
1.	Descrit IoT.	e architecture	and comm	unicatio	n protoco	ols of em	bedded s	ystems and	K2
2	Apply	he knowledge o	f embe <mark>dd</mark> e	d system	n <mark>s in unde</mark>	rstanding	the conce	pts of IoT.	K3
3	Apply	he k <mark>no</mark> wledge c	f different	protocol	s of IoT.				K3
4	Unders	tand the conc	epts of s	ensors	and com	municatio	on techno	ologies for	K2
5	Analyz	e data from phy	sical devic	es through	h the clo	ud using d	lata analy	tics.	K4
_	j	Ected 1090			AUTO	NOMO	US.		
		ESIG. 1700		SY	LLABUS	5			
	I	ntroduction to	Embedded	system	s				
UNI	T-I In	troduction to E	mbedded s	ystems, 1	Processon	embedde	d into a s	ystem, Embe	dded software
(10H	Irs) in	a system, Exa	mples of e	mbeddec	ł systems	, Embedd	ed systen	n-on-chip (So	oc) and use of
	V	LSI circuit desi	gn technol	ogy.					
	P	rocessor Archi	tectures ai	nd Com	municati	on Device	S		
UNI	F-II R	eal world inter	facing, Int	roduction	n to adva	anced arch	nitectures	, I/O types a	and examples,
(10]	Hrs) S	erial Bus com	munication	protoc	ols, Para	llel bus	device p	rotocols, Int	ernet enabled
	S	vstems.							
	т.	traduction to 1	הד <i>פ</i> , אנסא	Л					
UNI	г .тт і	T definition C	haracteristi	n cs of Io'	T Physic	al Design	of IoT I	ogical Desig	m of IoT IoT
(101	\mathbf{Hrs} P	rotocols M2M	Difference	es of 10	imilaritie	s between	M2M an	d IOT SDN	and NFV for
(101	I	T.	Difference	ind D	lillillilli		1012101 un		
UNI	Γ-ΙΥ Ι	T Physical Dev	vices & En	dpoints					
(10]	Hrs) B	asic building bl	ocks of an	IoT Dev	vice, Exer	nplary De	vice: Ras	pberry Pi and	d IoT devices,

		Sensors like ultrasonic, IR sensor, temperature & humidity etc., communication modules
		like Bluetooth, zigbee, Wi-Fi & WSN, Lora WAN 6LoWPAN
UINII '	T_V	IOT Physical Servers, Cloud Offerings & Data Analytics for IOT
	I-V Inc)	Web Application Messaging Protocol (WAMP), Cloud based communication, Data
(101	115)	Analytics, IoT Design Methodology with a use.
Textb	ooks:	
1.	Emb	bedded System Architecture Programming and Design, Raj Kamal, 2nd Edition, McGraw Hill
2.	Inter	rnet of Things: A Hands-On Approach, ArshdeepBahga, Vijay Madisetti
Refer	ence l	Books:
1.	Emb	bedded Software Primer, David Simon, Pearson
2.	Inter	met of Things: Principles and Paradigms by RajkumarBuyya, Amir VahidDastjerdi.
e-Res	ource	S
1.	https	s://nptel.ac.in/courses/106/105/106105166/
2.	https	s://nptel.ac.in/courses/108/102/108102169/

CodeCategoryLTPCI.ME.M							Exam		
B20E	EOE05	OE	3			3	30	70	3 Hrs
		INTRO	DUCTION	I TO SE	NSORS	AND TRA	ANSDUC	CERS	
	(Offered by EEE)								
	(Offered to AIDS, CE, CSBS, CSE, ECE, IT & ME)								
Cours	e Objec	tives: Students w	ill learn						
1.	The bas	sic principles of S	Sensors & '	Transduc	cers, class	sification a	and their of	characteristic	2S
2.	About	the concepts of E	lectromech	nanical a	nd Radia	tion Senso	rs		
3.	About	he basics of ther	mal sensor	s					
4.	About	he basics of Mag	gnetic sense	ors					
5.	The Re	cent Trends in So	ensor Tech	nologies	and their	application	ons		
Cour	se Outc	omes: After com	pletion of t	the cours	e, the stu	dent will l	be able to		
S No				Outer	mo				Knowledge
5.110				Outer	me				Level
1.	Apply and Tr	the principles to ansducers	understan	d the ch	aracterist	ics & clas	sification	of Sensors	K3
2.	Explor Sensor	e the concepts	and cons	struction	of Elec	tromechar	nical and	Radiation	K3
3.	Explo	e the concepts an	nd construc	ction of T	Thermal s	ensors			К3
4.	Explo	e the concepts a	nd construc	ction of N	Magnetic	sensors			K3
5.	Illustra	ate the Recent Tr	ends in Sei	nsor Tecl	hnologies	and appli	cations	EGE	K3
		Estd. 1980			AUTO	NOMO	JS		
				SY	LLABUS	5			
UNI	т_І]	NTRODUCTIO	ON TO SE	NSORS	TRANS	DUCERS			
(101	Irs)	Sensors/Transduc	ers, Pr	inciples,	Class	ification,	Paran	neters (Cl	haracteristics),
(101		Environmental Pa	arameters, I	Electrica	l, Mecha	nical and T	Thermal C	Characterizat	ions.
	1	ELECTROMEC	CHANICA	L AND	RADIA	TION SEN	SORS		
UNI'	т-п 1	ntroduction, Ind	uctive Sen	isors- Se	ensitivity	and Line	arity of 1	he Sensor,	Ferromagnetic
(10 I	Irs)	Plunger Type T	ransducers.	, Capaci	tive Sen	sors- The	Parallel	Plate Capa	citive Sensor,
	· · · · ·	Iltrasonic Senso	rs. Basic (Characte	ristics of	radiation	sensors,	Types of P	hotosensistors
	/	Photodetectors, I	Photocondu	ictive Ce	ell-The L	DR.			
	- I -		10056						
UNI	г-ш (THERMAL SEN	NSORS					a m i	
(10 I	Hrs)	ntroduction-Gas	Thermome	etric Sen	sors, Acc	ustic Tem		Sensor, Ther	mal Radiation
		sensors-Detector	s, Spectros	copic Th	ermomet	ry, Noise	1 hermom	etry, Heat F	ux Sensors.
	"		NGODG						
UNI	Γ-ΙΥ	ntroduction	INSUKS	and Son	ore Ind	lotonoo or	d Edda	Curront Son	ore Veriable
(10 I	Hrs)	nduotonoo Sorra	ore Varia	and Sens	sors, mai	A newla	n Euuy	Movement	Tropoducero
inductance Sensors- variable gap sensor, Angular/Rolary Movement Ir					Transducers-				

	Synchro's, Electromagnetic Flowmeter, Switching Magnetic Sensors- Pulse Wire Sensor.						
	RECENT TRENDS IN SENSOR TECHNOLOGIES & APPLICATIONS						
UNI	V Introduction- Film Sensors-Thick Film Sensors-Thin Film Sensors, Semiconductor IC						
(10 E	Irs) Technology-Standard Methods. Home Appliance Sensors, Aerospace Sensors, Medical						
	Diagnostic Sensors, Sensors for Environmental Monitoring.						
	•						
Textb	oooks:						
1	SENSORS AND TRANSDUCERS Second Edition by D. Patranabis © 2003 by PHI Learning						
1.	Private Limited, Delhi. ISBN-978-81-203-2198-4						
2	Sawhney A.K., "A Course in Electrical & Electronic Measurement and Instrumentation,"						
Ζ.	Dhanpat Rai & Company Private Limited, New Delhi, 18th Edition, 2007.						
Refer	ence Books:						
1	SENSORS AND TRANSDUCERS Third Edition by I. Sinclair 2011, by Newes Publications,						
1.	Delhi. ISBN: 0756049321						
2.	Measurement Systems: Application & Design, E.A. Doebelin, Mc Graw Hill						

C	CodeCategoryLTPCI.ME.MExam									
B20I	ГОЕ06	OE	3			3	30	70	3 Hrs.	
			N	IOBILE	COMPU	U TING				
				(Offe	ered by I	T)				
			(Offer	ed to CE	E, ECE, I	EEE & M	E)			
Cours	se Obje	ctives:								
1.	To und	erstand the funda	mentals of	mobile	communi	cation.				
2.	To und	erstand the archi	tecture of v	various W	Vireless C	Communic	ation Net	works.		
3.	To und	erstand the signif	ficance of o	lifferent	layers in	mobile sy	stem Cou	irse Contents	•	
Cours	se Outc	omes: After com	pletion of	the cours	e, the stu	dent will b	be able to			
S.No				Outco	me				Knowledge	
5.110				oute	////C				Level	
1.	Develo	op a strong grour	iding in the	fundam	entals of	mobile Ne	etworks		K3	
2	Apply	knowledge in M	IAC, Netw	ork, and	Transpo	rt Layer p	orotocols	of Wireless	К3	
	Netwo	rk								
3.	Famili	arize with Ad ho	oc Network	s, IEEE	802.11	WLAN sta	indards a	nd different	K2	
	protoc	ols								
4.	Analys	se the Mobile Ne	twork Lay	er system	1 working	3			K3	
5.	Famili	arize with WAP	Model						K2	
			/							
		- Second		SY	LLABUS	<u>snu i</u>				
		ntroduction to	Wireless I	Network	s: Appli	cations, H	istory, Si	mplified Ref	erence Model,	
		Vireless transmi	ssion, Free	juencies,	Signals,	Antennas	s, Signal	propagation,	Multiplexing,	
(10E	Irs) I	Modulation, Spread spectrum, Cellular Systems: Frequency Management and Channel								
	1	Assignment, type	s of nand-o	orr and tr	ieir chara	cteristics.				
		AC Mativati	on CDMA	EDMA		CDMA	Talaaami	munication S	victoria CSM	
LINIT	г п	VIAC – MOUVau	oli, SDIVIA	, FDMA	all activ	, CDMA, n Mohilit		mont Hond	Systems, OSM.	
	I-11 / Irs) (SSM SMS Int	anon nack ernetional	ng anu roaming	for GS	p, Moonn M call r	y manage ecording	functions	subscriber and	
(101		ervice data mana	ogement D	FCT TE	$\frac{101}{5}$	MTS IMT	-2000	functions, s	subscriber and	
	c		igement, D	LC1, 11	21 KA, $0.$	WI15, IIVI1	-2000.			
		Vireless LAN.	Infrared y	s Radio	transmi	ission Inf	rastructu	re Adhoc N	etwork IFFF	
UNI		302.11WLAN SI	andards A	S. Raule Architect	ure Serv	vices HIP	FRLAN	Bluetooth A	Architecture &	
(10 H	(10 Hrs) protocols									
	1	1000000101								
	I	Aobile Networ	k Laver:	Mobile	IP. Dvr	namic Ho	st Confi	guration Pro	tocol, Mobile	
UNIT	ר- וע	Transport Laver.	, Traditior	al TCP	, Indirec	t TCP. S	Snooping	TCP, Mobi	le TCP, Fast	
(10 H	Irs) r	etransmit/Fast	recovery,	Transm	ission/Ti	me-out f	reezing,	Selective 1	retransmission.	
Ì	Í	Transaction Orier	nted TCP.				U,		,	

		Support for Mobility: Wireless Application Protocol: Architecture, Wireless Datagram								
UNI	T-V	Protocol, Wireless Transport Layer Security, Wireless Transaction Protocol, Wireless								
(10 Hrs) Session Protocol, Wireless Application Environment, Wireless Markup Language										
		Scripts, Wireless Telephone Application.								
Textb	ooks:									
1.	Joche	n Schiller, "Mobile Communication", Second Edition, Pearson Education, 2008.								
2.	Cloud	Computing, Theory and Practice, Dan C Marinescu, MK Elsevier.								
Refer	ence B	ooks:								
1	Willia	am Stallings, "Wireless Communications and Networks", Second Edition, Pearson								
1.	Educa	ation, 2004.								
2	C. Si	va Ram Murthy, B. S. Manoj, "Adhoc Wireless Networks: Architectures and Protocols",								
۷.	Secon	nd Edition, Pearson Education, 2008.								
e-Res	ources									
1.	https:	//nptel.ac.in/courses/106/106/106106147/#								
2.	https:	//www.tutorialspoint.com/android/index.htm								

0	CodeCategoryLTPCI.ME.MExam									
B20N	B20MEOE10 OE 3 3 30 70									
			PRO	DJECT	MANAG	EMENT				
				(Offe	red by M	(E)				
		(Offe	red to AID	S, CE,	CSBS, C	SE, ECE,	EEE & I	T)		
Cours	se Object	ives:								
1.	To make	the students un	nderstand t	ne impor	tance and	l necessity	of Projec	et Manageme	ent.	
2.	To devel	op the ability to	o apply var	ious proj	ject planr	ing and so	cheduling	tools and de	al with various	
	risks in j	projects.		•			• . • •	1	1 /	
3.	To deve	lop the ability	y to manag	ge vario	us aspec	ts of pro	jects incl	uding emoti	onal stress in	
	employe	es.								
Cour	a Outaa	mage After com	mlation of	haaan	a the stu	dant will 1	a abla ta			
Cours		ines: After com		the cours	se, the stu		be able to		Knowledge	
S.No				Outco	ome				Level	
	Underst	and the funda	mentals a	nd impo	rtance o	f project	managen	nent in the	Level	
1.	context	of present-day	complex b	usiness s	etting.	project			K2	
	Apply v	various tools an	nd techniqu	es for pl	anning a	nd schedu	ling the p	rojects like		
2.	Gantt cl	nart, PERT, and	l CPM netv	vorks.			0 1	5	K3	
2	Underst	and various t	echniques	to asse	ss and	mitigate t	he risks	in project	K)	
з.	manage	ment	7/ 💻						K2	
1	Underst	and the ways of	of evaluation	ng a pro	ject, repo	orting to the	ne manag	ement, and	K)	
	the proc	ess of terminat	ing a proje	ct.	AUTO	NOMO	US		K2	
5.	Underst	and the role an	d responsit	oilities of	f a projec	t manager	, importa	nce of team	К2	
	manage	ment, and way	to manage	the stres	s.					
				~~~~		~				
				SY.		<b>S</b>	<u> </u>			
TINIT		verview of Pr	oject Man	agemen	t: Charac	cteristics of	of project	s, Need and	Objectives of	
UNI (10 I	I-I pr Ima) of	project management, Project management: the person, the team, the system; The evolution								
(101	<b>115</b> 0	project management	gement, 11	le Proje	ct Life (	ycie, Sta	ges and	different for	ins of Project	
	IV	anagement.								
UNI	Γ.ΙΙ Ρ	roiect Plannin	o and Scl	heduling	• Work	breakdow	n structu	re Gantt ch	arts Network	
(10 F	III   II Irs) di	agrams – activi	ty on node	(AON)	diagrams	CPM and	PERT (F	Rasic Probler	ns)	
(101	<b>1</b> 15) ui				ander anno	, er ivi une				
	<b>P</b>	roject Risk M	lanagemer	t: Risk	concept	s, Risk id	lentificati	on: Sources	of risks and	
UNII	l' <b>-III</b>   id	entification tec	chniques, I	Risk Ass	sessment,	Risk res	ponse pl	anning, Prin	ciples of risk	
(10 F	1 <b>rs)</b>   m	anagement.					*	-	-	
	I									
UNI	<b>Γ-ΙV Ρ</b>	roject Evaluati	ion, Comn	unicatio	on, and T	[erminati	on: Proje	ct formative	evaluation and	
(10 H	<b>Irs</b> ) su	mmary evaluat	tion; Projec	t commu	inication	managem	ent – mee	tings and rep	ports; Types of	

	termination and closeout responsibilities.							
UNIT-V (10 Hrs)Roles, Authority, and Teams in Project Management: Project manager's r responsibility, Authority in project management, Teams in project management at building approach, Emotional stress and stress management.								
Text l	Books:							
1.	John M Nicholas, Project Management for Business and Technology: Principles and Practice, Prentice Hall of India, 2002.							
2.	Shtub, Bard and Globerson, Project Management: Engineering, Technology, and Implementation, PH Inc.							
Refer	ence Books:							
1.	S. Choudhury, Project Scheduling and Monitoring in Practice.							
2.	P. K. Joy, Total Project Management: The Indian Context, Macmillan India Ltd.							
3.	Larson, E.W. and Gray, C.F. (2018), Project management the managerial process, Seventh Edition, McGraw-Hill							
4.	Jerome D. Wiest and Ferdiannd K. Levy, A management guide to PERT/CPM, PHI.							
e-Res	ources:							
1.	https://nptel.ac.in/courses/110104073							



Code		Category	L	Т	Р	С	I.M	E.M	Exam
B20MEOE11		OE	3			3	30	70	3 Hrs.
			Ν	ANO T	ECHNO	LOGY			
	(Offered by ME)								
		(Offe	red to AID	S, CE,	CSBS, C	SE, ECE,	EEE & I	( <b>T</b> )	
Cour	se Objec	tives:							
1.	This co	This course introduces to the fundamentals of nano-scale engineering and manufacturing							
2.	This course gives a detailed understanding of various application of nano technology.								
3	Well-established and novel synthesis/fabrication methods nanostructures will be discussed giving						cussed giving		
5.	a broad overview of nano manufacturing processes.								
4.	Standard characterization methods will be elucidated using various examples								
Cour	se Outco	mes: After com	pletion of	the cours	se, the stu	dent will b	be able to		
S.No	Outcome Kno						Knowledge		
									Level
1.	<b>Understand</b> the fundamental principles of nanotechnology and <b>illustrate</b> the crystal structures.								
2.	Illustra	te various prop	erties o <mark>f n</mark> a	no mate	rials.				K3
3.	<b>Demonstrate</b> a comprehensive understanding of nano-fabrication methods. K3								
4.	Practic	e state-of-the-ar	t character	ization r	nethods f	or n <mark>an</mark> oma	terials		K3
5.	5. <b>Demonstrate</b> the various aspects of carbon nano tubes and various fields of K3								
		Estd. 1980			AUTO	NOMO	JS		
				SY	LLABUS	5			
IINIT_I		Introduction: History of nano science, definition of nano meter, nano materials, nano							
(8H	(rs) te	technology. Classification of nano materials. Bragg's equation, Crystal symmetries, crystal							
(01	d	directions, crystal planes. Band structure.							
	T								
UNI	T-II   P	Properties of nano materials: Mechanical properties, electrical properties, dielectric							
(10F	Irs) p	properties, thermal properties, magnetic properties, opto electronic properties. Effect of size							
	re	reduction on properties, electronic structure of nano materials.							
				<u> </u>		11 1			
	S	Synthesis and Fabrication: Synthesis of bulk polycrystalline samples, growth of single							
UNI	Γ-III	crystais. Synthesis techniques for preparation of nano particle <b>Bottom-Up Approach</b> – sol							
(12H	Irs)	gel synthesis, hydrothermal growth, thin film growth, PVD and CVD; Top Down							
	A	semiconductor nano structures growth techniques for nano structures							
semiconductor nano su uctures, growth techniques for nano structures.									
	T,	naging/charact	erization	Proof	ce stat	-of the or	t chara	cterization	methods for
UNI	$\Gamma$ -IV $\begin{bmatrix} n \\ n \end{bmatrix}$	nanomaterials understanding and critication nanomaterial safety and handling methods							
(12H	$\frac{1}{re}$	required during characterization, Imaging/characterization of nanostructures General							

	consi	derations for imaging. Scanning probe techniques: XRD, SEM, TEM, AFM and						
	NSOM, piezo response microscopy, X-ray photoelectron spectroscopy, XANES and XAFS.							
angle resolved photoemission spectroscopy, diffuse reflectance spectra, photolumi								
	spectra. Raman spectroscopy.							
	1							
	Carb	on Nano Technology: Characterization of carbon allotropes, synthesis of diamond –						
	nucle	nucleation of diamond, growth and morphology. Applications of nano crystalling diamond						
UNI	<b>Γ-V</b> films	films, grapheme, applications of carbon nano tubes.						
(8H	rs) Appl	Applications of Nano Technology: Applications in material science, bioengineering,						
	biolo	biology and medicine, surface science, sensors, energy, and environment. Applications of						
	nano	nano structured thin fins, applications of quantum dots.						
Textb	ooks:							
1.	. Nano science and nano technology by M.S Ramachandra Rao, Shubra Singh, Wiley publishers.							
C	Scanning I	canning Electron Microscopy and X-Ray Microanalysis by Joseph Goldstein Lyman, Dale E.						
۷.	Newbury,	Jewbury, David C. Joy, Patrick Echlin, Springer.						
Reference Books:								
1.	Introduction to Nano Technology by Charles P. Poole, Jr., Frank J.Owens, Wiley publishers.							
2	Nanotechnology by Jermy J Ramsden, Elsevier publishers							
3	Nano Materials- A.K.Bandyopadhyay/ New Age Introdu.							
4	Nano Essentials- T.Pradeep/TMH.							
5	Nanotechnology the Science of Small by M.A Shah, K.A Shah, Wiley Publishers.							
6	Principles of Nanotechnology by Phani Kumar, Scitech.							
e-Res	e-Resources: ENGINEERING COLLEGE							
1.	https://npte	Lac.in/courses/118102003 AUTONOMOUS						
2.	https://nptel.ac.in/courses/113106093							

3 Hrs.							
nowledge Level							
K2							
K3							
K3							
Develop the CAD models for rapid prototyping <b>K</b> 3							
Use the tools for AM Production K3							
sification,							
Additive							
Manufacturing Process Chain (Eight Steps)							
<b>Design for AM :</b> Preparation of CAD Models – STL File, STL File Format, STL Files from							
a CAD System, Software for Slicing, Part Orientation, Support Structure							
D							
Liquid Based AM: Stereolithography (SL) – Apparatus, Working Principle, Process							
Modeling, Process Parameter, advantages, limitations & Applications.							
Solid Based AM: Fused Deposition Modelling (FDM), Laminated object Manufacturing							
(LOM), Ultrasonic AM- Working Principle, materials, Processes modeling, products,							
advantages, limitations, and applications							
Flootron							
dvantages							
Beam Menting - working Finiciple, Flocesses Modeling, materials, products, advantages,							
$\mathbf{Post Processing Treatment in AM: Support Material Removal Improve - surface quality}$							
Dimesnional Deviations Property Enhancements using Non-thermal and Thermal							
i normui							

UNIT-IV (10 Hrs)		Reverse Engineering: Basic concept- Digitization techniques – Model Reconstruction –						
		Data Processing for Rapid Prototyping: CAD model preparation, Data Requirements.						
		Materials for AM: Polymers, Thermoplastics and Thermosetting Polymers, Metals,						
		Ceramics and Composites						
		Rapid Tooling: Introduction, Conventional v/s RT, Classification - Direct and Indirect,						
	T X7	Differentiate, Direct Methods -Laminated Tooling, DMLS, Indirect Methods- RTV						
	I-V	Tools,3D Keltool, Applications						
(10 ł	trs)	Application Areas for AM: Automotive, Aerospace, Medical Modeling Reverse						
		Engineering Data Architectural Modeling						
Textb	ooks:	· · · · ·						
	Add	dditive Manufacturing Technologies, Gibson, Ian, David W. Rosen, Brent Stucker, and Mahyar						
1.	Kho	horasani Springer 2021						
	Rapi	inid prototyping: Principles and applications second edition Chua C K Leong K F and Lim						
2.	2. C.S. World Scientific Publishers, 2003.							
Refer	Reference Books:							
1.	Rapi	Rapid prototyping, Andreas Gebhardt, Hanser Gardener Publications, 2003.						
	Rapi	pid Prototyping and Engineering applications: A tool box for prototype development.						
2.	Liou	uW.Liou, Frank W.Liou, CRC Press, 2007.						
3.	Rapi	oid Prototyping: Theory and practice, Ali K. Kamrani, Emad Abouel Nasr, Springer, 2006.						
4.	Paul	ul F.Jacobs – "Stereo lithography and other RP & M Technologies", SME, NY 2011						
5.	Add	dditive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital						
	Man	unufacturing, Ian Gibson, David W Rosen, Brent Stucker, Springer, 2015, 2nd Edition.						
	Rapi	id Tooling: Technologies and Industrial Applications, Peter D.Hilton, Hilton/Jacobs, Paul						
6.	F.Jac	acobs, CRC press, 2000.						
	I							
e-Res	ource	S:						
1.	https	s://courses.gen3d.com/courses/enrolled/988400						
	https	://all3dp.com/1/design-for-additive-manufacturing-dfam-simply-explained/#where-to-learn-						
2.	dfan	<u>1</u>						
3	https	https://markforged.com/resources/blog/design-for-additive-manufacturing-dfam						

Code		Category	L	Т	Р	С	I.M	E.M	Exam	
B20BSOE04		OE	3	-		3	30	70	3 Hrs.	
			FUZZY	SETS A	AND FUZ	ZZY LOG	FIC			
	(Offered by- EM&H)									
		(Offered	to AIDS,	CE, CSI	BS, CSE,	ECE, EE	E, IT &	ME)		
Course	e Object	ives:								
1	Crisp sets, Fuzzy sets and Fuzzy Union, Fuzzy Intersection of Fuzzy sets									
2	Lamda cut for fuzzy relations, Fuzzy tolerance and equivalence relations									
3	Fuzzification for features of membership									
4	Defuzzi	Defuzzification to scalars by Centroid method, center of sums method, mean and maxima								
	method	iethod.								
5	Fuzzy l	ogic, Crisp conn	nectives, Fu	zzy logi	c connec	tivity				
6	Applica	tions of Fuzzy s	systems like	e washin	g machir	e, air cono	litioner co	ontroller		
Course	e Outcor	nes: After comp	oletion of th	e course	e, the stuc	lent will be	e able to			
S.No		0			Outcom	e			Knowledge Level	
1	Describ	e Crispsets, Fuz	zy sets and	operatio	ons of Fu	zzy sets	7		K3	
2	Describ	e di <mark>ffe</mark> rent types	s of Fu <mark>zzy</mark> 1	elations					К3	
3	Describe Fuzzification for features of membership							K3		
4	Perform	n Def <mark>uzzificat</mark> io	n to scalars	s by Cer	ntroid me	thod, cent	re of sun	ns method	V2	
4	and mea	an and maxima	:GE	K5						
5	Describe Fuzzy logic, Crisp connectives, Fuzzy logical connectivity K3							K3		
6	Apply Fuzzy logic to systems like washing machine, air conditioner controller. K3									
				SYI	LLABUS					
Crisp Sets Vs Fuzzy Sets: Crisp sets an overview, Concept of fuzziness, the notion o						ss, the notion of				
UNI	T-I	Fuzzy sets, basic concepts of fuzzy sets.								
(10H	(rs)	<b>Operations of Fuzzy Sets: Fuzzy</b> set operations –fuzzy complement, fuzzy union, fuzzy								
intersection, combinations of operations.										
						1				
UNI	Г-П	<b>Fuzzy Relations:</b> Fuzzy Cartesian product, Fuzzy relations, operations on fuzzy								
(10Hrs)		relations, properties of fuzzy relations, Lamda cut for fuzzy relations and composition,								
		ruzzy toterance, and equivalence relations.								
UNIT-III (10Hrs)		defuzzification to crispset. Defuzzification to scalars (controid method, contro of suma								
		method mean of maxima method)								
	-	memou, mean (	71 IIIaxIIIIa	neurou)	•					
UNI	г <b>-IV</b>	FuzzyLogie I	ntroduction	to fuz	zy logic	Crisp co	nnectives	vs Fuzzy	Approximate	
(100	Irs)	reasoning		10 IUZ	2, 10510,	Chip CO		, is rully,	, reproximate	
		reasoning.								

UNIT-V (10Hrs)		<b>Applications of Fuzzy Systems:</b> Fuzzy Control System, Control System Design Problem, Simple Fuzzy Logic Controller, general applications of fuzzy logic (washing machine, air conditioner controller).						
Text Books:								
1.	Timot	hy J.Ross., Fuzzy Logic with Engineering Applications -Second Edition, Wiley						
	Public	Publications,2007,NewDelhi.						
2.	S.Raja	S.Rajasekaran, G.A.Vijayalakshmi Pai, Neural networks, Fuzzy logic, and genetic algorithms -						
	synthesis and applicationsPrentice-Hall of India private limited, 2008, NewDelhi.							
Reference Books:								
1.	H.J.Zimmerman, Fuzzyset theory and its applications,4thedition,Springer, 2006.NewDelhi.							
2	S.Nanda and N.R.Das "Fuzzy Mathematical concepts, Narosa Publishing House, NewDelhi.							

