Course Code: B23HS1101					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R23
I B.Tech. I Semester MODEL QUESTION PAPER					
COMMUNICATIVE ENGLISH					
Common to all Programmes of Engineering					
Time: 3 Hrs.			Max. Marks: 70 M		
Answer Question No. 1 compulsorily					
Answer ONE Question from EACH UNIT					
Assume suitable data if necessary					
10 x 2 = 20 Marks					
			CO	KL	M
1.	a).	Construct any four expressions used for invitations.	1	3	2
	b).	Build a short conversation on "Importance of learning a foreign language".	1	3	2
	c).	Choose the suitable transition/discourse markers: i. \qquad a) as b) since c) because d) for ii. The flood victims are short of food. \qquad they urgently need medical supplies. a) Similarly b) In addition c) Any how d) For instance	2	3	2
	d).	Construct a sentence for each of the following words. i. Flutter ii. Obsolete	2	3	2
	e).	Choose the appropriate articles to fill-in the blanks: i. Srikanth is planning to go to \qquad United States of America. ii. John built \qquad yard for his cattle.	3	3	2
	f).	Construct the sentences with appropriate prepositions: i. Shivaji Maharaj fought \qquad every kind of aggression. ii. How did these things come \qquad ?	3	3	2
	g).	Construct the following chunks into meaningful sentences. i. The platform is on the train. ii. To college walk I every day.	4	3	2
	h).	Organize the given sentences into a meaningful paragraph: i. The foundation stone was laid in 1972. ii. As a result, the city suffered from horrendous traffic congestion. iii. It was going to be the first in South Asia. iv. They plied in the center of the road. v. To ease traffic in the city, it was decided that an underground railway line would be built. vi. Calcutta, unlike other cities, keeps its trams.	4	3	2

		OR			
$\mathbf{1 1 .}$	a).	Analyze and develop an essay on "Artificial Intelligence influence on Human thought".	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{5}$
	$\mathbf{b) .}$	Simplify (Précis) the following paragraph. "Women entrepreneurs in the developing world often face challenges that limit their chances for success and growth. They often have less access to education than men and have difficulty getting financing on their own. But with an understanding of the essential aspects of doing business - such as planning, financing, networking and marketing - they can overcome those obstacles. That's where the 10,000 Women Initiative comes in. As Faiza Elmasry tells us, it's an investment in education with dividends that benefit the businesswomen, their local communities, and their national economies." (Goldman Sachs invests in Educating Women in Business, Voice of America, voanews.com)	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{5}$

NOTE : Questions can be given as A, B splits or as a single Question for 10 marks

Course Code: B23BS1101					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R23
I B.Tech. I Semester MODEL QUESTION PAPER					
LINEAR ALGEBRA AND CALCULUS					
Common to all Programmes of Engineering					
Time: 3 Hrs.			Max. Marks: 70 M		
Answer Question No. 1 compulsorily					
Answer ONE Question from EACH UNIT					
Assume suitable data if necessary					
$10 \times 2=20 \mathrm{Marks}$					
			CO	KL	M
1.	(a)	State Cauchy-Binet formula.	1	1	2
	(b)	Discuss the conditions for testing the consistency of a system of nonhomogeneous linear equations.	1	2	2
	(c)	State Cayley-Hamilton theorem.	2	1	2
	(d)	Find the index and signature of the quadratic form $x^{2}+2 y^{2}-3 z^{2}$	2	3	2
	(e)	State Lagrange's Mean-Value theorem	3	1	2
	(f)	Verify Cauchy Mean-Value theorem for $f(x)=e^{x}$ in (a, b)	3	3	2
	(g)	Explain Leibnitz's rule for differentiation under integral sign	4	2	2
	(h)	Find $\frac{d u}{d t}$, if $u=y^{2}-4 a x, x=a t^{2}, y=2 a t$	4	3	2
	(i)	Express $\iiint_{R} f(x, y, z) d x d y d z$ in spherical polar co-ordinates	5	2	2
	(j)	Evaluate $\int_{0}^{2} \int_{0}^{4}\left(x^{2}+y^{2}\right) d x d y$	5	3	2
$5 \times 10=50$ Marks					
UNIT-1					
2.	(a)	Determine the rank of the matrix $\left(\begin{array}{rrrr}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right)$.	1	3	5
	(b)	Find whether the following equations are consistent. If so, solve them $x+y+2 z=4,2 x-y+3 z=9,3 x-y-z=2$	1	3	5
		OR			

3.	(a)	Using Gauss-Jordan method, find the inverse of the matrix $\left(\begin{array}{lll}3 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 4 & 5\end{array}\right)$	1	3	5
	(b)	Solve the equations $20 x+y-2 z=17,3 x+20 y-z=-18$ and $2 x-3 y+20 z=25$ by Gauss-Seidel iteration method.	1	3	5
		UNIT-2			
4.	(a)	Find the characteristic equation of the matrix $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right)$ and hence compute A^{-1}. Also find the matrix represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$	2	3	10
		OR			
5.		Reduce $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 x z$ to sum of squares by linear transformation and hence find the matrix of the transformation.	2	3	10
		\% me			
		A UNIT-3			
6.	(a)	Verify Rolle's theorem for $\frac{\sin x}{8^{x}}$ in $(0, \pi)$	3	3	5
	(b)	Expand $f(x)=\cos x$ by Maclaurin's theorem with Lagrange's form of remainder.	3	3	5
		OR			
7.	(a)	Using Taylor's theorem, prove that $x-\frac{x^{8}}{6}<\sin x<x-\frac{x^{8}}{6}+\frac{x^{5}}{120}$, for $x>0$	3	3	5
	(b)	Find the appropriate value ofcused in Cauchy's Mean-Value theorem for $f(x)=\ln x$ in $[1, e]$	3	3	5
		UNIT-4			
8.	(a)	If $\log u=\frac{x^{3}+y^{3}}{3 x+4 y}$, find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$	4	3	5
	(b)	If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z, w=2 z^{2}-x y$, evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$	4	3	5
		OR			

9.	(a)	Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$ using Taylor's theorem.	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{5}$
	(b)	Discuss the maxima and minima of $f(x, y)=x^{3} y^{2}(1-x-y)$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{5}$
		UNIT-5			
10.	(a)Evaluate $\iint^{2} x y d x d y$ over the positive quadrant of the circle $x^{2}+y^{2}=a^{2}$ by changing it in to polar coordinates	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{5}$	
	(b)	Evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{\frac{-x^{2}}{y}} d x d y$ by changing the order of integration	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{5}$
11.		Find the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ by using triple integral.	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{1 0}$

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE : Questions can be given as A,B splits or as a single Question for 10 marks

Course Code: B23BS1102					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R23
I B.Tech. I Semester MODEL QUESTION PAPER					
ENGINEERING PHYSICS					
CSE, CSIT, ECE, EEE \& IT					
Time: 3 Hrs.			Max. Marks: 70 M		
Answer Question No. 1 compulsorily					
Answer ONE Question from EACH UNIT					
Assume suitable data if necessary					
$10 \times 2=20 \mathrm{Marks}$					
			CO	KL	M
1.	a).	State the Principle of Superposition.	1	1	2
	b).	Explain the double refraction phenomena of light.	1	2	2
	c).	What are lattice parameters?	2	2	2
	d).	Draw the lattice planes with Miller Indices (100) and (111).	2	2	2
	e).	What do you understand by polar and nonpolar dielectrics?	3	1	2
	f).	Define relative permeability, magnetic susceptibility and give their relation?	3	2	2
	g).	State the Heisenberg's uncertainty principle.	4	1	2
	h).	Define Fermi energy?	4	1	2
	i).		5	2	2
	j).	List out the characteristic properties of semiconductors.	5	2	2
$5 \times 10=50 \mathrm{Marks}$					
UNIT-1					
2.	a).	Elaborate the essential conditions for producing sustained interference of light.	1	2	4
	b).	How are Newton's rings formed and deduce an expression for the wavelength of light?	1	3	6
		OR			
3.	a).	Analyze the diffraction of light at a single slit and obtain the condition for maxima.	1	4	6
	b).	What are Half wave plate and Quarter wave plate and mention their applications?	1	2	4
		UNIT-2			

4.	a).	Define Packing fraction of atomic crystals and calculate the Packing fraction for an FCC lattice?	2	3	5
	b).	What are Miller indices and explain how they are determined?	2	3	5
		OR			
5.	a).	Deduce the Bragg's X-ray diffraction condition?	2	3	5
	b).	Describe the Laue's method for the determination of crystal structure.	2	3	5
		UNIT-3			
6.	a).	Explain the different types of Polarizations possible in dielectrics.	3	2	4
	b).	Deduce the Clausius-Mosotti equation and explain its significance in dielectrics?	3	3	6
		OR			
7.	a).	Classify the Magnetic materials based on atomic magnetic moment.	3	2	4
	b).	Describe the hysteresis exhibited by a ferromagnetic material and explain it using a suitable theory.	3	3	6
		UNIT-4			
8.	a).	Obtain the Schrodinger's time independent wave equation.	4	3	6
	b).	Calculate deBroglie wavelength of an electron moving with a velocity of $1 / 20^{\text {th }}$ of the velocity of light?	4	3	4
9.	a).	Give an account of successes and failures of classical free electron theory.	4	2	4
	b).	Obtain an expression for the electrical conductivity of a metal using Quantum free electron theory.	4	3	6
		UNIT-5			
10.	a).	Derive an expression for the density of electrons in the conduction band of an intrinsic semiconductor?	5	3	6
	b).	Describe the variation of Fermi energy with temperature and dopant concentration in n-type semiconductor.	5	2	4
		OR			
11.	a).	Discuss the Hall effect, in detail, and explain its significance.	5	3	6
	b).	Distinguish between drift and diffusion currents in semiconductors.	5	2	4
CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL			M-MARKS		

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R23
I B.Tech. I Semester MODEL QUESTION PAPER					
BASIC ELECTRICAL \& ELECTRONICS ENGINEERING					
CSE, CSIT, ECE, EEE \& IT					
Time: 3 Hrs.			Max.	Mark	70 M
PART - A: BASIC ELECTRICAL ENGINEERING					
Answer Question No. 1 compulsorily					
Answer ONE Question from EACH UNIT					
Assume suitable data if necessary					
$5 \times 1=5$ Marks					
			CO	KL	M
1.	a).	Define Ohm's law.	1	1	1
	b).	Define Impedance.	1	1	1
	c).	List types of wind turbines	2	1	1
	d).	State two advantages of renewable energy sources?	2	1	1
	e).	List types of earthing methods.	3	1	1
- $3 \times 10=30$ Marks					
		二It UNIT-1			
2.	a).	Explain Kirchhoff"s Laws with example	1	3	5
	b).	Calculate the equivalent resistance R_{ab} at terminals a -b for the given circuit.	1	3	5
		OR			
3.	a).	Derive the expression RMS value of sinusoidal wave form $v(t)=$ $\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$.	1	3	5
	b).	Explain (i) Active power (ii) Reactive power (iii) Apparent power in ac circuits.	1	3	5
		UNIT-2			
4.	a).	Illustrate the working of solar power plant with a neat layout.	2	3	5
	b).	Explain principle of operation transformer.	2	3	5

5.	a).	Draw the circuit diagram of Full wave rectifier and explain its operation.	2	3	5
	b).	Draw the block diagram of an electronic instrumentation system and explain its working.	2	3	5
		UNIT-3			
6.	a).	Write the Truth Tables of Logic Gates - NOT, OR, AND, NOR and NAND	3	3	5
	b).	Convert the following number system into indicated system. i) $(256)_{10}=(\ldots \ldots \ldots . .)_{2}$ ii) $(\mathrm{F} 32 \mathrm{C})_{16}=(\ldots \ldots . .)_{10}$	3	3	5
		OR			
7.	a).	Solve the Boolean expressions using Boolean algebra, Show: $A^{\prime}{ }^{\prime}+B+B D^{\prime}+A B D^{\prime}+A^{\prime} C=B+C$	3	3	5
	b).	Draw and explain the Full adder circuit using half adders.	3	3	5

NOTE: Questions can be given as \mathbf{a}, \mathbf{b} splits or as a single Question for 10 marks

Course Code: B23ME1101

Course Code: B23ME1101					
SAGIRAMAKRISHNAMRAJUENGINEERINGCOLLEGE(A)					23
I B.Tech I Semester-MODELQUESTION PAPER					
ENGINEERING GRAPHICS					
CE, ECE, EEE \& ME					
Time:3Hrs.			Max.Marks:70		
Answer any one Question from Each Unit					
All questions carry equal Marks					
Assume suitable data if necessary					
		UNIT-I	CO	KL	M
1		Construct a parabola when the distance of the focus from directrix is 50 mm .Also draw the tangent and normal at any point on the curve.	1	3	14
OR					
2		A circle of 50 mm diameter rolls along a straight line without slipping. Draw the curve traced out by a point P on the circumference, for one complete revolution of the circle. Draw a tangent and normal at any point on the curve.	1	3	14
		\square			
		Laty UNIT-II			
3	a.	Draw the projections of the following points on the same ground line, keeping the projectors 25 mm apart. (i) Point A in the HP and lying 20mmbehind the VP; (ii) Point B is 40 mm above the HP and 25 mm in front of the VP; (iii) Point C is 25 mm below the HP and 25 mm behind the VP; (iv) Point D is 15 mm above the HP and 50 mm behind the VP.	2	3	7
	b.	The front view of a line, inclined at 30^{0} to the V.P is 65 mm long. Draw the projections of a line when it is parallel to and 40 mm above the H.P, its one end being 30 mm in front of the V.P.	2	3	7
		OR			
4		A line AB , of 80 mm long has its end $\mathrm{A}, 15 \mathrm{~mm}$ in front of VP and 20 mm above HP. The other end B is 40 mm above HP and 50 mm in front of VP. Draw the projections of the line and determine the inclinations of the line with HP and VP.	2	3	14
		UNIT-III			
5		Draw the projections of a regular hexagon of 25 mm side, having one of its sides in the H.P and inclined at 60° to the V.P, and its surface making an angle of 45° with the H.P.	3	3	14

	OR			
6	Draw the projections of a regular pentagon of 40 mm side, having its surface inclined at 30° to the H.P and side parallel to the H.P and inclined at an angle of 60° to the V.P.	3	3	14
	UNIT-IV			
7	A hexagonal pyramid, base 25 mm side and axis 50 mm long, has an edge of its base on the ground. Its axis is inclined at 30° to the ground and parallel to the VP. Draw its projections.	4	3	14
	OR			
8	Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P, with the axis inclined at 45^{0} to the V.P.	4	3	14
	UNIT-V			
9	A square pyramid, base 40 mm side and axis 65 mm long, has its base on the H.P and all the edges of the base equally inclined to the V.P. It is cut by a section plane, perpendicular to the V.P, inclined at 45° to the H.P and bisecting the axis. Draw the sectional top view and true shape of the section.	5	3	14
	\square OR			
10	Draw the isometric projection of a cylinder of base diameter 30 mm and axis height 60 mm when axis is a) Horizontal and b) Vertical.	5	3	14

CO-COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as \mathbf{a}, \mathbf{b} splits or as a single Question for 14 marks

Course Code: B23BS1201					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R23
I B.Tech. II Semester MODEL QUESTION PAPER					
DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS					
Common to all Programmes of Engineering					
Time: 3 Hrs.			Max. Marks: 70 M		
Answer Question No. 1 compulsorily					
Answer ONE Question from EACH UNIT					
Assume suitable data if necessary					
$10 \times 2=20$ Marks					
			CO	KL	M
1.	(a)	Define Leibnitz's Linear differential equation. What is the Integrating factor of homogeneous differential equation $M d x+N d y=0$	1	1	2
	(b)	Define the orthogonal trajectories of the family of curves.	1	1	2
	(c)	Solve ($\left.D^{2}+4 D+4\right) y=0$	2	3	
	(d)	Find the particular integral of $\left(D^{2}+1\right) y=\cos x$	2	3	2
	(e)	Form a P.D.E from $z=a x+b y+c$	3	3	2
	(f)	Write the standard form of Lagrange's linear equation.	3	1	2
	(g)	Determine ∇r where $r=\sqrt{x^{2}+y^{2}+z^{2}}$	4	3	2
	(h)	If $\bar{F}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$ find $\operatorname{div} \bar{F}$ at $(1,-1,1)$	4	3	2
	(i)	Write the formula for work done by a force \bar{F} in moving a particle from a point A to a point B.	5	2	2
	(j)	State Stoke's theorem.	5	1	2
$5 \times 10=50$ Marks					
UNIT-1					
2.	(a)	Solve $\frac{d y}{d x}-\frac{2 y}{x+1}=(x+1)^{3}$	1	3	5
	(b)	Solve $y \log y d x+(x-\log y) d y=0$	1	3	5
OR					
3.	(a)	If the air is maintained at $30^{\circ} \mathrm{C}$ and the temperature of the body cools from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 15 minutes, determine the time at which the temperature of the body will be $40^{\circ} \mathrm{C}$.	1	3	5
	(b)	Find the orthogonal trajectories of the family of parabolas $y=a x^{2}$	1	3	5
		UNIT-2			
4.	(a)	Solve $(D-2)^{2} y=8\left(e^{2 x}+x^{2}\right)$	2	3	5

	(b)	Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}+y=\tan x$	2	3	5
		OR			
5.	(a)	Solve simultaneous equations $\frac{d x}{d t}+y=\sin t, \frac{d y}{d t}+x=\cos t$, given that $x=2$ and $y=0$ when $t=0$	2	3	5
	(b)	The damped LCR circuit is governed by the differential equation $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=0$ where L, C, R are positive constants. Find the critical resistance.	2	3	5
		UNIT-3			
6.	(a)	Solve the equation $x(\mathrm{y}-\mathrm{z}) p+y(\mathrm{z}-x) q=z(\mathrm{x}-\mathrm{y})$.	3	3	5
	(b)	Solve $\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right) z=e^{2 x-y}$	3	3	5
		OR			
7.		Solve $\left(D^{2}-D^{\prime 2}\right) z=e^{x+y} \sin (x+2 y)$	3	3	10
		UNIT-4			
8.	(a)	Find the directional derivative of $f=x y+y z+z x$ in the direction of vector $\bar{i}+2 \bar{j}+2 \bar{k}$ at the point $(1,2,0)$.	4	3	5
	(b)	If $\vec{F}=3 x^{2} \vec{\imath}+5 x y^{2} \vec{\jmath}+5 x y z^{3} \vec{k}$, find $\nabla(\nabla . \vec{F})$	4	3	5
		OR			
9.	(a)	Prove that $\left(y^{2}-z^{2}+3 y z-2 x\right) \vec{\imath}+(3 x z+2 x y) \vec{\jmath}+(3 x y-$ $2 \mathrm{xz}+2 \mathrm{z}) \vec{k}$ is solenoidal.	4	3	5
	(b)	Find the angle between the surfaces $x y^{2} z=3 x+z^{2}$ and $3 x^{2}-y^{2}+2 z=1$ at the point $(1,-2,1)$	4	3	5
		UNIT-5			
10.	(a)	Find the work done by the force field $\vec{F}=\left(2 x+y^{2}\right) \vec{\imath}+x z \vec{\jmath}+x y z \vec{k}$ in moving a particle along a straight line from $(0,0,0)$ to $(2,1,3)$.	5	3	5
	(b)	Evaluate $\oint_{c}\left\{\left(x^{2} y d x+x^{2} d y\right\}\right.$ where C is circle $x^{2}+y^{2}=a^{2}$ by using Green's theorem.	5	3	5
		OR			
11		Verify Gauss - divergence theorem for $\vec{F}=2 x z \vec{\imath}+y z \vec{\jmath}+z^{2} \vec{k}$ where S is an upper half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$	5	3	10

COURSE OUTCOME
KL-KNOWLEDGE LEVEL
M-MARKS

NOTE: Questions can be given as a, b splits or as a single Question for 10 marks

Course Code: B23BS1203					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R23
I B.Tech. II Semester MODEL QUESTION PAPER					
CHEMISTRY					
CSE, CSIT, ECE, EEE \& IT					
Time: 3 Hrs.			Max. Marks: 70 M		
Answer Question No. 1 compulsorily					
Answer ONE Question from EACH UNIT					
Assume suitable data if necessary					
$10 \times 2=20$ Marks					
			CO	KL	M
1.	a).	Write the cell notation for Calomel Electrode	1	2	2
	b).	What is the reason for pitting corrosion to occur?	1	2	2
	c).	Define solar cell and solar panel?	2	1	2
	d).	List any two day to day commercial applications of nano technology?	2	1	2
	e).	The wave function of a particle in a 1-dimensional box is given by?	3	1	2
	f).	How do we differentiate atomic orbitals and molecular orbitals?	3	2	2
	g).	Give any two examples for thermosetting polymers?	4	2	2
	h).	How are polymers used in everyday life?	4	2	2
	i).	What is Lambert-Beer's Law?	5	1	2
	j).	How does temperature affect dissolved oxygen measurements?	5	2	2
$5 \times 10=50 \mathrm{Marks}$					
UNIT-1					
2.	a).	What are the basic requirements for commercial batteries, explain construction, working principle of Zn -air batteries?	1	3	5
	b).	What are fuel cells? Explain the hydrogen-oxygen fuel cell and its advantages.	1	3	5
OR					
3.	a).	Describe mechanism of electrochemical corrosion by taking Rusting of Iron as an example	1	3	5
	b).	Why does the small anodic area result in intense corrosion? Discuss the differential aeration corrosion with reactions?	1	3	5
		UNIT-2			
4.	a).	How does doping affect the conductivity of intrinsic semiconductor,	2	3	5

NOTE : Questions can be given as A, B splits or as a single Question for 10 marks

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R23
I B.Tech. II Semester MODEL QUESTION PAPER					
BASIC CIVIL AND MECHANICAL ENGINEERING					
CSE, CSIT, ECE, EEE \& IT					
Time: 3 Hrs.			Max. Marks: 70 M		
PART-A: BASIC CIVIL ENGINEERING					
Answer Question No. 1 compulsorily					
Answer ONE Question from EACH UNIT					
Assume suitable data if necessary					
5x 1=5 Marks					
			CO	KL	M
1.	a).	Write about the difference between structural engineering and geotechnical engineering in terms of their primary focus and objectives.	1	2	1
	b).	Explain the advantages of using steel as a construction material.	1	2	1
	c).	Explain the importance of accuracy and precision in surveying.	2	2	1
	d).	Explain the importance of tunnels in transportation infrastructure.	3	2	1
	e).	Explain the concept of hydrology and its role in water resources management.	3	2	1
Fstel. 1980 UNIT-1			3x 10 = 30 Marks		
			UNIT-1		
2.	a).	Explain the significance and responsibilities of civil engineers within society?	1	3	5
	b).	List and briefly describe at least three major disciplines within civil engineering.	1	3	5
		OR			
3.	a).	Explain the significance of construction materials in civil engineering projects. List three essential construction materials and their applications.	1	3	5
	b).	Explain the concept of prefabricated construction and its benefits in detail, highlighting at least two advantages of using prefabricated components in construction projects?	1	3	5
		UNIT-2			
4.	a).	Explain the primary objective of surveying and demonstrate two practical applications of this field.	2	3	5

		UNIT-1			
2.	a).	Elaborate the Role of Mechanical Engineering in society and in different sectors	1	3	5
	b).	Illustrate the technologies used in automotive and aerospace industries	1	3	5
		OR			
3.	a).	What are the engineering applications of composite materials.	1	2	5
	b).	Briefly discuss the classification of metallic materials.	1	2	5
		UNIT-2			
4.	a).	Briefly discuss the Principles of Casting	2	2	5
	b).	Discuss the importance of 3D printing and Smart manufacturing	2	2	5
		OR			
5.	a).	Distinguish between the 2-Stroke and 4-Stroke engines	2	2	5
	b).	Illustrate the working principle of Cochran Boiler.	2	3	5
		UNIT-3			
6.	a).	Explain the working principle of Steam power plant	3	2	5
	b).	Discuss the working principle of nuclear power plant	3	2	5
		- OR			
7.	a).	Discuss the belt drives and their applications.	3	2	5
	b).	Describe the applications of robots	3	2	5
		O-COURSE OUTCOME KL-KNOWLEDGE LEVEL	-M		

NOTE : Questions can be given as A,B splits or as a single Question for 10 marks

Course Code: B23EE1203					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R23
I B.Tech. II Semester MODEL QUESTION PAPER					
ELECTRICAL CIRCUIT ANALYSIS-I					
For EEE					
Time: 3 Hrs.			Max. Marks: 70 M		
Answer Question No. 1 compulsorily					
Answer ONE Question from EACH UNIT					
Assume suitable data if necessary					
10 $\times 2$ = 20 Marks					
			CO	KL	M
1.	a).	Distinguish between active and passive element.	1	2	2
	b).	Indicate the relation between nodes, branches and loops in an electric circuit.	1	2	2
	c).	Represent the Phasor for the sinusoid $v=20 \cos \left(2 t+40^{0}\right) \mathrm{V}$.	2	2	2
	d).	Draw the power triangle.	2	2	2
	e).	Distinguish between self and mutual inductance.	3	2	2
	f).	Explain about balanced phase voltages in a three phase system.	3	2	2
	g).	Sketch the frequency vs current plot in a series RLC circuit	4	3	2
	h).	Draw the locus diagram of series RL circuit with constant reactance and variable resistance.	4	3	2
	i).	Explain the principle of reciprocity.	5	2	2
	j).	Show the condition for maximum power when load resistance is equal to source resistance.	5	3	2
$5 \times 10=50$ Marks					
		UNIT-1			
2.	a).	Calculate V_{o} using source transformation for the circuit shown in Fig. 1 Fig. 1	1	4	5
	b).	Calculate equivalent resistance R_{ab} and find current ' i ' in the circuit shown in Fig. 2	1	4	5

		Fig. 2			
		OR			
3.	a).	Analyze the circuit shown in Fig. 3 to find i_{1} and i_{2} using current division rule. Fig. 3	1	4	5
	b).	Calculate currents i_{1} and i_{2} in the circuit shown Fig. 4 using mesh analysis. Estd. 1980 Fig. 4	1	4	5
		UNIT-2			
4.	a).	Illustrate the relationship for Phasor voltage and current in an inductor and draw the Phasor diagram.	2	4	5
	b).	Calculate $v(t)$ and $i(t)$ in the circuit shown in Fig. 5 Fig. 5	2	4	5
		OR			

5.	a).	Calculate the RMS value of the waveform shown in Fig. 6 Fig. 6	2	4	5
	b).	The voltage across the load is $\mathrm{v}(\mathrm{t})=60 \cos \left(\omega \mathrm{t}-10^{0}\right) \mathrm{V}$ and current through the element in the direction of voltage drop is $i(t)=1.5$ $\cos \left(\omega t+50^{\circ}\right)$ A. Calculate (a)complex and apparent powers (b)real and reactive powers (c)load impedance.	2	4	5
		UNIT-3			
6.	a).	Calculate the Phasor currents I_{1} and I_{2} in the circuit shown in Fig. 7 Fig. 7	3	4	5
	b).	Obtain the expression for coefficient of coupling and analyze how mutual inductance effects the coefficient of coupling?	3	4	5
		Estur 1700 OR			
7.	a).	Analyze the relation between line voltage, phase voltage and line current and phase current in a star connection.	3	4	5
	b).	A balanced star connected load of $4+\mathrm{j} 3$ per phase is connected to a balanced 3 -phase 400 V supply. The phase current is 12 A . Calculate (i) the total active power (ii) reactive power (iii) total apparent power.	3	4	5
		UNIT-4			
8.	a).	In the parallel RLC circuit shown in fig. $8, \mathrm{R}=8 \mathrm{k} \Omega, \mathrm{L}=0.2 \mathrm{mh}$, and $\mathrm{C}=8 \mu \mathrm{~F}$. Calculate Resonant frequency ' ω_{0} ', Quality factor ' Q_{0} ', Band width 'B', Half power frequencies ω_{1} and ω_{2}. Fig. 8	4	4	5

	b).	Illustrate the expression for resonant frequency, band width, quality factor in a series resonance circuit.	4	4	5
		OR			
9.	a).	A series connected circuit has $\mathrm{R}=4 \Omega$, and $\mathrm{L}=25 \mathrm{mH}$. Calculate the value of C that will produce a quality factor of 50 . Find ω_{1}, ω_{2} and B .	4	4	5
	b).	For the series connected RL circuit in which input voltage is $\mathrm{V}_{\mathrm{rms}}=200 \mathrm{~V}$ with a frequency of $50 \mathrm{~Hz}, \mathrm{XL}=25 \Omega$ and $\mathrm{R}=50 \Omega$. Examine the locus of the current, mark the range of ' i ' for maximum and minimum values of ' R '.	4	4	5
		UNIT-5			
10.	a).	Sketch the Thevenin equivalent at terminals a-b for the circuit shown in Fig. 9 Fig. 9	5	3	5
	b).	Calculate current ' i ' in the circuit shown in Fig.10, using superposition theorem Fig. 10	5	4	5
		OR			
11.	a).	Calculate Vo in the circuit shown in Fig. 11 using Norton's theorem Fig. 11	5	4	5
	b).	Analyze the circuit and verify Tellegen's theorem shown in Fig. 12.	5	4	5

NOTE: Questions can be given as \mathbf{a}, \mathbf{b} splits or as a single Question for 10 marks

	b).	Develop C program to find the transpose of a matrix.	3	3	5
		UNIT-4			
8.	a).	Explain about structures and pointers. How can you access elements of a structure using its pointer notation. Discuss with an example.	4	3	5
	b).	Differentiate structures and unions.	4	2	5
		OR			
9.	a).	Apply bit fields and write a C program to demonstrate its use.	4	3	5
	b).	Write a C program to copy one structure variable to another structure of the same type	4	3	5
		UNIT-5			
10.	a).	Differentiate malloc and calloc with an example program.	5	3	5
	b).	Explain the storage classes in C.	5	2	5
		OR			
11.	a).	Write a C program to copy the contents of file1 to file2.	5	3	5
	b).	Discuss the random file access functions in C.	5	2	5

NOTE: Questions can be given as \mathbf{a}, \mathbf{b} splits or as a single Question for 10 marks

